Skip to main content

Part of the book series: Antibiotics ((ANTIBIOTICS,volume 3))

Abstract

A previous summary of chloramphenicol and its mode of action appeared in Vol I of the Mode of Action of Antibiotics. This review will chiefly concern the mode of action of chloramphenicol as currently understood and will concentrate on the work published since the previous volume. The previous review by Hahn (1967) has provided a summary of the work on chloramphenicol to that date. Other reviews published since that time also may be consulted for additional information (Weisblum and Davies, 1968; Pestka, 1971).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, E. H., and R. S. Schweet: Synthesis of hemoglobin in a cell-free system, I. Properties of the complete system. J. Biol. Chem. 237, 760–767 (1962).

    PubMed  CAS  Google Scholar 

  • Ambrose, C. T., and A. H. Coons: Studies on antibody production. VIII. The inhibitory effect of chloramphenicol on the synthesis of antibody in tissue culture. J. Exptl. Med. 117, 1075–1088 (1963).

    Article  CAS  Google Scholar 

  • Apirion, D., and D. Schlessinger: Coresistance to neomycin and kanamycin by mutations in an Escherichia coli Locus that affects ribosomes. J. Bacteriol. 96, 768–776 (1968).

    PubMed  CAS  Google Scholar 

  • Armentrout, S. A., and A. S. Weisberger: Inhibition of directed protein synthesis by chloramphenicol: Effect of magnesium concentration. Biochem. Biophys. Res. Commun. 26, 712–716 (1967).

    CAS  Google Scholar 

  • Armentrout, S. A., and A. S. Weisberger: Ribonucleoprotein interaction with mammalian monosomes. Biochim. Biophys. Acta 161, 180–187 (1968).

    PubMed  CAS  Google Scholar 

  • Aronson, A. I., and S. Spiegelman: Protein and ribonucleic acid synthesis in a cloramphenicolinhibited system. Biochim. Biophys. Acta 53, 70–84 (1961a).

    Article  PubMed  CAS  Google Scholar 

  • Aronson, A. I., and S. Spiegelman: On the nature of the ribonucleic acid synthesized in the presence of chloramphenicol. Biochim. Biophys. Acta 53, 84–95 (1961b).

    Article  PubMed  CAS  Google Scholar 

  • Ashwell, M. A., and T. S. Work: Contrasting effects of cycloheximide on mitochondrial protein synthesis in vivo and in vitro. Biochem. Biophys. Res. Commun. 32, 1006–1012 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Ball, A. J. S., and E. R. Tustanoff: Effect of d(−) and l(+)-threo-chloramphenicol on nucleotide and related respiratory activities in yeast undergoing metabolic repression and de-repression. Biochim. Biophys. Acta 199, 476–489 (1970).

    PubMed  CAS  Google Scholar 

  • Borsook, H., E. H. Fischer, and G. Keighley: Factors affecting protein synthesis in vitro in rabbit reticulocytes. J. Biol. Chem. 229, 1059–1070 (1957).

    PubMed  CAS  Google Scholar 

  • Brenner, S., A. O. W. Stretton, and S. Kaplan: Genetic code: The “nonsense” triplets for chain termination and their suppression. Nature 206, 994–998 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Brock, T. D.: Chloramphenicol. Bacteriol. Rev. 25, 32–48 (1961).

    PubMed  CAS  Google Scholar 

  • Brock, T. D.: Chloramphenicol. Experimental chemotheraphy, vol. III, p. 119–169. New York: Academic Press, 1964.

    Google Scholar 

  • Cameron, H. J., and G. R. Julian: The effect of chloramphenicol on the polysome formation of starved stringent Escherichia coli. Biochim. Biophys. Acta 169, 373–380 (1968).

    PubMed  CAS  Google Scholar 

  • Cannon, M.: The puromycin reaction and its inhibition by chloramphenicol. Eur. J. Biochem. 7, 137–145 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Capecchi, M. R.: Polypeptide chain termination in vitro: Isolation of a release factor. Proc. Natl. Acad. Sci. U.S. 58, 1144–1151 (1967a).

    Article  CAS  Google Scholar 

  • Capecchi, M. R.: A rapid assay for polypeptide chain termination. Biochem. Biophys. Res. Commun. 28, 773–778 (1967 b).

    CAS  Google Scholar 

  • Capecchi, M. R., and H. A. Klein: Characterization of three proteins involved in polypeptide chain termination. Cold Spring Harbor Symp. Quant Biol. 34, 469–477 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Cashel, M.: The control of ribonucleic acid synthesis in E. coli IV. Relevance of unusual phosphorylated compounds from amino acid-starved stringent strains. J. Biol. Chem. 244, 3133–3141 (1969).

    PubMed  CAS  Google Scholar 

  • Cashel, M., and J. Gallant: Two compounds implicated in the function of the RC gene of E. coli. Nature 221, 838–841 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Cashel, M., and B. Kalbacher: The control of ribonucleic acid synthesis in E. coli V. Characterization of a nucleotide associated with the stringent response. J. Biol. Chem. 245, 2309–2318 (1970).

    PubMed  CAS  Google Scholar 

  • Caskey, T., R. Tompkins, E. Scolnick, T. Caryk, and M. Nirenberg: Sequential translation of trinucleotide codons for the initiation and termination of protein synthesis. Science 162, 135–138 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Celma, M. L., R. E. Monro, and D. Vazquez: Substrate and antibiotic sites at the peptidyl transferase centre of E. coli ribosomes. FEBS Letters 6, 273–277 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Černá, J., and I. Rychlik: Cross resistance of Escherichia coli B ribosomes to inhibition of the puromycin reaction by erythromycin, spiramycin and chloramphenicol. Biochim. Biophys. Acta 157, 436–438 (1968).

    PubMed  Google Scholar 

  • Černá, J., I. Rychlík, and P. Pulkrábek: The effect of antibiotics on the coded binding of peptidyl-tRNA to the ribosome and on the transfer of the peptidyl residue to puromycin. Eur. J. Biochem. 9, 27–35 (1969).

    Article  PubMed  Google Scholar 

  • Chang, F. N., C. Siddhikol, and B. Weisblum: Subunit localization studies of antibiotic inhibitors of protein synthesis. Biochim. Biophys. Acta 186, 396–398 (1969).

    PubMed  CAS  Google Scholar 

  • Clark-Walker, G. D., and A. W. Linnane: In vivo differentiation of yeast cytoplasmic and mitochondrial protein synthesis with antibiotics. Biochem. Biophys. Res. Commun. 25, 8–13 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Clark-Walker, G. D., and A. W. Linnane: The biogenesis of mitochondria in Saccharomyces cerevisiae. A comparison between cytoplasmic respiratory-deficient mutant yeast and chloramphenicolinhibited wild type cells. J. Cell Biol. 34, 1–14 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Controulis, J., M. C. Rebstock, and H. M. Crooks: Chloramphenicol (Chloromycetin), V. Synthesis. J. Am. Chem. Soc. 71, 2463–2468 (1949).

    Article  CAS  Google Scholar 

  • Coutsogeorgopoulos, C.: On the mechanism of action of chloramphenicol in protein synthesis. Biochim. Biophys. Acta 129, 214–217 (1966).

    PubMed  CAS  Google Scholar 

  • Coutsogeorgopoulos, C.: Inhibitors of the reaction between puromycin and polylysyl-RNA in the presence of ribosomes. Biochem. Biophys. Res. Commun. 27, 46–52 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Coutsogeorgopoulos, C.: Amino acylaminonucleoside inhibitors of protein synthesis II. Effect on oligophenylalanine formation. Biochim. Biophys. Acta 240, 137–150; 247, 632 (1971).

    PubMed  CAS  Google Scholar 

  • Cross, D. F. W., G. W. Kenner, R. C. Sheppard, and C. E. Stehr: Peptides. Part XIV. Thiazole amino-acids degradation products of thiostrepton. J. Chem. Soc. 2143–2159 (1963).

    Google Scholar 

  • Cruchaud, A., and A. H. Coons: Studies on antibody production. XIII. The effect of chloramphenicol on priming in mice. J. Exptl. Med. 120, 1061–1074 (1964).

    Article  CAS  Google Scholar 

  • Cundliffe, E., and K. McQuillen: Bacterial protein synthesis. The effects of antibiotics. J. Mol. Biol. 30, 137–146 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Das, H. K., A. Goldstein, and L. C. Kanner: Inhibition by chloramphenicol of the growth of nascent protein chains in Escherichia coli. Mol. Pharmacol. 2,. 158–170 (1966).

    PubMed  CAS  Google Scholar 

  • Davis, F. C., and B. H. Sells: Synthesis and assembly of ribosomal protein into 50S subunits during recovery from chloramphenicol treatment. J. Mol. Biol. 39, 503–521 (1969).

    Article  PubMed  CAS  Google Scholar 

  • DeMoss, J. A., and G. D. Novelli: An amino acid dependent exchange between 32P labeled inorganic pyrophosphate and ATP in microbial extracts. Biochim. Biophys. Acta 22, 49–61 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Dixon, M.: The determination of enzyme inhibitor constants. Biochem. J. 55, 170–171 (1953).

    PubMed  CAS  Google Scholar 

  • Dresden, M. H., and M. B. Hoagland: Polyribosomes of Escherichia coli. Breakdown during glucose starvation. J. Biol. Chem. 242, 1065–1068 (1967).

    PubMed  CAS  Google Scholar 

  • Dresden, H. M., and M. B. Hoagland: Polyribosomes of Escherichia coli. Re-formation during recovery from glucose starvation. J. Biol. Chem. 242, 1069–1073 (1967).

    PubMed  CAS  Google Scholar 

  • Dunitz, J. D.: The crystal structure of chloramphenicol and bromamphenicol. J. Am. Chem. Soc. 74, 995–999 (1952).

    Article  CAS  Google Scholar 

  • Ehrenstein, G. von, and F. Lipmann: Experiments on hemoglobin biosynthesis. Proc. Natl. Acad. Sci. U.S. 47, 941–950 (1961).

    Article  CAS  Google Scholar 

  • Ellis, R. J., Chloroplast ribosomes; stereospecificity of inhibition by chloramphenicol. Science 163, 477–478 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Muñoz, R., R. E. Monro, R. Torres-Pinedo, and D. Vazquez: Substrate- and antibiotic-binding sites at the peptidyl-transferase centre of E. coli ribosomes. Studies on the chloramphenicol, lincomycin and erythromycin sites. Eur J. Biochem. 23, 185–193 (1971).

    Article  PubMed  Google Scholar 

  • Fico, R., and C. Coutsogeorgopoulos: Peptidyl transferase. A new method for kinetic studies. Biochem. Biophys. Res. Commun. 47, 645–651 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Firkin, F. C., and A. W. Linnane: Differential effects of chloramphenicol on the growth and respiration of mammalian cells. Biochem. Biophys. Res. Commun. 32, 398–402 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Firkin, F. C., and A. W. Linnane: Biogenesis of mitochondria. VIII. The effect of chloramphenicol on regenerating rat liver. Exptl. Cell Res. 55, 68–76 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Flessel, C. P.: Chloramphenicol protects polyribosomes. Biochem. Biophys. Res. Commun. 32, 438–446 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Fraenkel, D. G., and F. C. Neidhardt: Use of chloramphenicol to study control of RNA synthesis in bacteria. Biochim. Biophys. Acta 53, 96–110 (1961).

    Article  PubMed  CAS  Google Scholar 

  • Freeman, K. B.: Effects of chloramphenicol and its isomers and analogs on the mitochondrial respiratory chain. Can. J. Biochem. Physiol. 48, 469–478 (1970a).

    Article  CAS  Google Scholar 

  • Freeman, K. B.: Inhibition of mitochondrial and bacterial protein synthesis by chloramphenicol. Can J. Biochem. Physiol. 48, 479–485 (1970b).

    Article  CAS  Google Scholar 

  • Freeman, K. B., and D. Haldar: The inhibition of mammalian mitochondrial NADH oxidation by chloramphenicol and its isomers and analogs. Can. J. Biochem Physiol. 46, 1003–1008 (1968).

    Article  CAS  Google Scholar 

  • Frost, A. A., and R. G. Pearson: Kinetics and mechanisms, 233 pp. New York: Wiley & Sons 1953.

    Google Scholar 

  • Gale, E. F.: Mechanisms of antibiotic action. Pharmacol. Rev. 15, 481–530 (1963).

    PubMed  CAS  Google Scholar 

  • Gale, E. F., and J. P. Folkes: The assimilation of amino-acids by bacteria. 15. Actions of antibiotics on nucleic acid and protein synthesis in Staphylococcus aureus. Biochem. J. 53, 493–498 (1953).

    PubMed  CAS  Google Scholar 

  • Galper, J. B., and J. E. Darnell: Mitochondrial protein synthesis in HeLa cells. J. Mol. Biol. 57, 363–367 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Gardner, R. S., A. J. Wahba, C. Basilio, R. S. Miller, P. Lengyel, and J. F. Speyer: Synthetic polynucleotides and the amino acid code. VII. Proc. Natl. Acad. Sci. U.S. 48, 2087–2094 (1962).

    Article  CAS  Google Scholar 

  • Godchaux, W., and E. Herbert: The effect of chloramphenicol in intact erythroid cells. J. Mol. Biol. 21, 537–553 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, I. H.: Mode of action of antibiotics. II. Drugs affecting nucleic acid and protein synthesis. Am. J. Med. 39, 722–752 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, I. H., and K. Mitsugi: Inhibition by sparsomycin and other antibiotics of the puromycin-induced release of polypeptide from ribosomes. Biochemistry 6, 383–391 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Gordon, P. A., M. J. Lowdon, and P. R. Stewart: Effects of chloramphenicol isomers and erythromycin on enzyme and lipid synthesis induced by oxygen in wild-type and petite yeast. J. Bacteriol. 110, 504–510 (1972).

    PubMed  CAS  Google Scholar 

  • Gottesman, M.: Reaction of ribosome-bound peptidyl transfer ribonucleic acid with aminoacyl transfer ribonucleic acid or puromycin. J. Biol. Chem. 242, 5564–5571 (1967).

    PubMed  CAS  Google Scholar 

  • Gros, F., J. Dubert, A. Tissieres, S. Bourgeois, M. Michelson, R. Soffer, and L. Legaalt: Regulation of metabolic breakdown and synthesis of messenger RNA in bacteria. Cold Spring Harbor Symp. Quant. Biol. 28, 299–313 (1964).

    Article  Google Scholar 

  • Gros, F., And F. Gros: Role Des Aminoacides Dans La Synthese Des Acides NucléIques Chez E. Coli. Biochim. Biophys. Acta 22, 200–201 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Gross, W., and K. Ring: Effect of chloramphenicol on active amino acid transport. FEBS Letters 4, 319–322 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Gurgo, C., D. Apirion, and D. Schlessinger: Effects of chloramphenicol and fusidic acid on polyribosome metabolism in Escherichia coli. FEBS Letters 3, 34–36 (1969a).

    Article  PubMed  CAS  Google Scholar 

  • Gurgo, C., D. Apirion, and D. Schlessinger: Polyribosome metabolism in Escherichia coli treated with chloramphenicol, neomycin, spectinomycin or tetracycline. J. Mol. Biol. 45, 205–220 (1969 b).

    Article  PubMed  CAS  Google Scholar 

  • Guthrie, G. D., and J. M. Buchanan: Control of phage-induced enzymes in bacteria. Federation Proc. 25, 864–873 (1966).

    CAS  Google Scholar 

  • Hahn, F. E.: Chloramphenicol, antibiotics, vol. 1 (Gottlieb, D., Shaw, P.D., eds.) p. 308–330. Berlin-Heidelberg-New York: Springer 1967.

    Google Scholar 

  • Hahn, F. E., J. E. Hayes, C. L. Wisseman, H. E. Hopps, and J. E. Smadel: Mode of action of chloramphenicol. VI. Relation between structure and activity in the chloramphenicol series. Antibiot. & Chemotherapy 6, 531–543 (1956).

    CAS  Google Scholar 

  • Hahn, F. E., and C. L. Wisseman: Inhibition of adaptive enzyme formation by antimicrobial agents. Proc. Soc. Exptl. Biol. Med. 76, 533–535 (1951).

    CAS  Google Scholar 

  • Haldar, D., and K. B. Freeman: The inhibition of protein synthesis and respiration in mouse ascites tumor cells by chloramphenicol and its isomers and analogs. Can. J. Biochem. Physiol. 46, 1009–1017 (1968).

    Article  CAS  Google Scholar 

  • Hamburger, R. N.: Chloramphenicol-specific antibody. Science 152, 203–204 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Hamburger, R. N., and J. H. Douglass: Chloramphenicol-specific antibody. II. Reactivity to analogues of chloramphenicol. Immunology 17, 587–591 (1969 a).

    PubMed  CAS  Google Scholar 

  • Hamburger, R. N., and J. H. Douglass: Chloramphenicol-specific antibody. IV. Neutralization of antibiotic effect on Escherichia coli. Immunology 17, 599–602 (1969 b).

    PubMed  CAS  Google Scholar 

  • Hishizawa, T., J. L. Lessard, and S. Pestka: Studies on the formation of transfer ribonucleic acid-ribosome complexes. XII. Phenylalanyl-oligonucleotide binding to E. coli ribosomes: Necessity for a free amino group. Proc. Natl. Acad. Sci. U.S. 66, 523–530 (1970).

    Article  CAS  Google Scholar 

  • Hishizawa, T., and S. Pestka: Studies on the formation of transfer ribonucleic acid-ribosome complexes. XVII. The effect of tRNA on aminoacyl-oligonucleotide binding to ribosomes. Arch. Biochem. Biophys. 147, 624–631 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Hori, M., and M. Rabinovitz: Polyribosomal changes during inhibition of rabbit hemoglobin synthesis by an isoleucine antagonist. Proc. Natl. Acad. Sci. U.S. 59, 1349–1355 (1968).

    Article  CAS  Google Scholar 

  • Hori, M., J. Suzuki, and H. Umezawa: Messenger RNA-associated 30S ribosomal subunit: Extraction from E. coli and the effect of chloramphenicol on the content. J. Biochem. (Tokyo) 64, 905–907 (1968).

    CAS  Google Scholar 

  • Horowitz, J., and D. C. Hills: Evidence for the direct conversion of chloramphenicol particles into ribosomes in Escherichia coli. Biochim. Biophys. Acta 123, 416–419 (1966).

    PubMed  CAS  Google Scholar 

  • Hurwitz, C., and C. B. Braun: Measurement of binding of chloramphenicol by intact cells. J. Bacteriol. 93, 1671–1676 (1967).

    PubMed  CAS  Google Scholar 

  • Hurwitz, C., and C. B. Braun: Temperature-sensitivity of the weak bonds by which chloramphenicol is held in intact cells. Biochim. Biophys. Acta 157, 392–403 (1968).

    PubMed  CAS  Google Scholar 

  • Irvin, J. D., and G. R. Julian: The distribution of 14C-proline peptides synthesized in vitro directed by polycytidylic acid; the effect of chloramphenicol. FEBS Letters 8, 129–132 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Iyobe, S., H. Hashimoto, and S. Mitsuhashi: Integration of chloramphenicol-resistance gene of an R factor on Escherchia coli chromosome. Japan. J. Microbiol. 13, 225–232 (1969).

    CAS  Google Scholar 

  • Iyobe, S., H. Hashimoto, and S. Mitsuhashi: Integration of chloramphenicol-resistance genes of an R factor into various sites of an Escherichia coli chromosome. Japan. J. Microbiol. 14, 463–471 (1970).

    CAS  Google Scholar 

  • Jardetzky, O.: Studies on the mechanism of action of chloramphenicol, I. The conformation of chloramphenicol in solution. J. Biol. Chem. 238, 2498–2508 (1963).

    CAS  Google Scholar 

  • Jardetzky, O., and G. Julian: Chloramphenicol inhibition of polyuridylic acid binding to E. coli ribosomes. Nature 201, 397–398 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Julian, G. R.: [14C]Lysine peptides synthesized in an in vitro Escherichia coli system in the presence of chloramphenicol. J. Mol. Biol. 12, 9–16 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Julian, G. R.: Effect of chloramphenicol on synthesis of C14-lysine peptides. Antimicrobial Agents Chemotherapy 1965, 992–1000 (1966).

    Google Scholar 

  • Kaempfer, R.: Ribosomal subunit exchange during protein synthesis. Proc. Natl. Acad. Sci. U.S. 61, 106–113 (1968).

    Article  CAS  Google Scholar 

  • Kaempfer, R., and M. Meselson: Studies of ribosomal subunit exchange. Cold Spring Harbor Symp. Quant. Biol. 34, 209–220 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Kirschmann, C, and B. D. Davis: Phenotypic suppression in Escherichia coli by chloramphenicol and other reversible inhibitors of the ribosome. J. Bacteriol. 98, 152–159 (1969).

    PubMed  CAS  Google Scholar 

  • Kokolis, N., N. Mylonas, and I. Ziegler: Pteridine and riboflavin patterns during tail regeneration in Triturus species and the effects of chloramphenicol, isoxanthopterin and reserpine. Z. Naturforsch. 27b, 285–291 (1972 a).

    Google Scholar 

  • Kokolis, N., N. Mylonas, and I. Ziegler: Pteridine and riboflavin in tumor tissue and the effect of chloramphenicol and isoxanthopterin. Z. Naturforsch. 27b, 292–295 (1972 b).

    Google Scholar 

  • Kono, M., K. Ogawa, and S. Mitsuhashi: Drug resistance of staphylococci. VI. Genetic determinant for chloramphenicol resistance. J. Bacteriol. 95, 886–892 (1968).

    PubMed  CAS  Google Scholar 

  • Kono, M., K. O’Hara, M. Nagawa, and S. Mitsuhashi: Drug resistance of staphylococci: Ability of chloramphenicol related compounds to induce chloramphenicol resistance in Staphylococcus aureus. Japan. J. Microbiol. 15, 219–227 (1971).

    CAS  Google Scholar 

  • Kroon, A. M.: Protein synthesis in heart mitochondria. I. Amino acid incorporation into the protein of isolated beef-heart mitochondria and fractions derived from them by sonic oscillation. Biochim. Biophys. Acta 72, 391–402 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Kucan, Z., and F. Lipmann: Differences in chloramphenicol sensitivity of cell-free amino acid polymerization systems. J. Biol. Chem. 239, 516–520 (1964).

    PubMed  CAS  Google Scholar 

  • Kurland, C. G.: The proteins of the bacterial ribosome. Protein synthesis: A series of advances, vol. 1 (McConkey, E., ed.), p. 179–228. New York: Marcel Dekker, 1971.

    Google Scholar 

  • Kurland, C. G., and O. Maaloe: Regulation of ribosomal and transfer RNA synthesis. J. Mol. Biol. 4, 193–210 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Lacks, S., and F. Gros: A metabolic study of the RNA-amino acid complexes in Escherichia coli. J. Mol. Biol. 1, 301–320 (1959).

    Article  CAS  Google Scholar 

  • Lamborg, M. R., and P. C. Zamecnik: Amino acid incorporation into protein by extracts of E. coli. Biochim. Biophys. Acta 42, 206–211 (1960).

    Article  PubMed  CAS  Google Scholar 

  • Lark, K. G.: Regulation of chromosome replication and segregation in bacteria. Bacteriol. Rev. 30, 3–32 (1966).

    PubMed  CAS  Google Scholar 

  • Lark, K. G. and C. Lark: Regulation of chromosome replication in E. coli: a comparison of the effects of phenethyl alcohol treatment with those of amino acid starvation. J. Mol. Biol. 20, 9–19 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Lazzarini, R. A., and R. M. Winslow: The regulation of RNA synthesis during growth rate transitions and amino acid deprivation in E. coli. Cold Spring Harbor Symp. Quant. Biol. 35, 383–390 (1970).

    Article  Google Scholar 

  • Lembach, K. J., and J. M. Buchanan: The relationship of protein synthesis to early transcriptive events in bacteriophage T4 Infected Escherichia coli B. J. Biol. Chem. 245, 1575–1587 (1970).

    PubMed  CAS  Google Scholar 

  • Lessard, J. L., and S. Pestka: Studies on the formation of transfer ribonucleic acid-ribosome complexes. XXII. Binding of aminoacyl-oligonucleotides to ribosomes. J. Biol. Chem. 247, 6901–6908 (1972 a).

    PubMed  CAS  Google Scholar 

  • Lessard, J. L., and S. Pestka: Studies on the formation of transfer ribonucleic acid-ribosome complexes XXIII. Chloramphenicol, aminoacyl-oligonucleotides, and Escherichia coli ribosomes. J. Biol. Chem. 247, 6909–6912 (1972 b).

    PubMed  CAS  Google Scholar 

  • Levine, A. J., and R. L. Sinsheimer: The process of infection with bacteriophage øXl74. XIX. Isolation and characterization of a chloramphenicol-resistant protein from øX-infected cells. J. Mol. Biol. 32, 567–578 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Levine, A. J., and R. L. Sinsheimer: The process of infection with bacterial phage øX174. XXVII. Synthesis of a viral-specific chloramphenicol-resistant protein in øX174 infected cells. J. Mol. Biol. 39, 655–668 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Levinthal, C., D. P. Fan, A. Higa, and R. A. Zimmerman: The decay and protection of messenger RNA in bacteria. Cold Spring Harbor Symp. Quant. Biol. 28, 183–190 (1964).

    Article  Google Scholar 

  • Linnane, A. W., A. J. Lamb, C. Christodolou, and H. B. Lukins: The biogenesis of mitochondria. VI. Biochemical basis of the resistance of Saccharomyces cerevisiae toward antibiotics which specifically inhibit mitochondrial protein synthesis. Proc. Natl. Acad. Sci. U.S. 59, 1288–1293 (1968).

    Article  CAS  Google Scholar 

  • Maaloe, O., and N. O. Kjeldgaard: Control of macromolecular biosynthesis. New York: W. A. Benjamin, Inc. 1966.

    Google Scholar 

  • Marmur, J., and A. K. Saz: The inhibition of adaptive enzyme formation in Escherichia coli by chloramphenicol. Antibiot. & Chemotherapy 3, 613–617 (1953).

    CAS  Google Scholar 

  • Maxwell, R. E., and V. S. Nickel: The antibacterial activity of the isomers of chloramphenicol. Antibiot. & Chemotherapy 4, 289–295 (1954).

    CAS  Google Scholar 

  • Midgley, J. E. M., and W. J. H. Gray: The control of ribonucleic acid synthesis in bacteria. The synthesis and stability of ribonucleic acid in chloramphenicol-inhibited cultures of Escherichia coli. Biochem. J. 122, 149–159 (1971).

    PubMed  CAS  Google Scholar 

  • Mitsuhashi, S., M. Kono, M. Sagawa, and H. Mori: Drug resistance of staphylococcus: X. Induction of chloramphenicol resistance by its derivatives. Japan. J. Microbiol. 13, 177–180 (1969).

    CAS  Google Scholar 

  • Monro, R. E.: Catalysis of peptide bond formation by 50S ribosomal subunits from Escherichia coli. J. Mol. Biol. 26, 147–151 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Monro, R. E.: The peptidyl transferase activity of ribosomes. Cold Spring Harbor Symp. Quant. Biol. 34, 357–366 (1969).

    Article  CAS  Google Scholar 

  • Monro, R. E., and K. A. Marcker: Ribosome-catalysed reaction of puromycin with a formylmethionine-containing oligonucleotide. J. Mol. Biol. 25, 347–350 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Monro, R. E., and D. Vazquez. Ribosome-catalysed peptidyl transfer: Effects of some inhibitors of protein synthesis. J. Mol. Biol. 28, 161–165 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Naha, P. M.: A chloramphenicol resistant host protein involved in lysogenization. Biochem. Biophys. Res. Commun. 35, 920–925 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Nasjleti, C. E., and H. H. Spencer: The effects of chloramphenicol on mitosis of phytohemagglutinin stimulated human leukocytes. Exptl. Cell Res. 53, 11–17 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Nathans, D.: Puromycin inhibition of protein synthesis: Incorporation of puromycin into peptide chains. Proc. Natl. Acad. Sci. U.S. 51, 585–592 (1964).

    Article  CAS  Google Scholar 

  • Nathans, D., Ehrenstein, G. von, R. Monro, and F. Lipmann: Protein synthesis from aminoacyl-soluble ribonucleic acid. Federation Proc. 21, 127–135 (1962).

    CAS  Google Scholar 

  • Nathans, D., and F. Lipmann: Amino acid transfer from aminoacyl-ribonucleic acids to protein on ribosomes of Escherichia coli. Proc. Natl. Acad. Sci. U.S. 47, 497–504 (1961).

    Article  CAS  Google Scholar 

  • Nathans, D., and A. Neidle: Structural requirements for puromycin inhibition of protein synthesis. Nature 197, 1076–1077 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Newton, B. A.: Mechanisms of antibiotic action. Ann. Rev. Microbiol. 19, 209–240 (1965).

    Article  CAS  Google Scholar 

  • Nirenberg, M. W., and J. H. Matthaei: The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc. Natl. Acad. Sci. U.S. 47, 1588– 1602 (1961).

    Article  CAS  Google Scholar 

  • Nomura, M., and K. Hosokawa: Biosynthesis of ribosomes: Fate of chloramphenicol particles and of pulse-labeled RNA in Escherichia coli. J. Mol. Biol. 12, 242–265 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Nomura, M., and J. D. Watson: Ribonucleoprotein particles within chloromycetin-inhibited Escherichia coli. J. Mol. Biol. 1, 204–217 (1959).

    Article  CAS  Google Scholar 

  • Oerter, D., and R. Bass: Effect of chloramphenicol infusion on the rate of synthesis of cytochrome oxidase in mammalian embryonic tissue. Arch. Exptl. Pathol. Pharmakol. 272, 239–242 (1972).

    Article  CAS  Google Scholar 

  • Okamoto, S., and D. Mizuno: Inhibition by chloramphenicol of protein synthesis in the cell-free system of a chloramphenicol-resistant strain of Escherichia coli. Nature 195, 1022–1023 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Okamoto, S., and D. Mizuno: Mechanism of chloramphenicol and tetracycline resistance in Escherichia coli. J. Gen. Microbiol. 35, 125–133 (1964).

    PubMed  CAS  Google Scholar 

  • Okamoto, S., and Y. Suzuki: Chloramphenicol-, dihydrostreptomycin-, and kanamycin-inactivating enzymes from multiple drug-resistant Escherichia coli carrying episome ‘R’. Nature 208, 1301–1303 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Orgel, H. A., and R. N. Hamburger: Chloramphenicol-specific antibody. IV. A method for the detection of anti-chloramphenicol antibody in human sera. Immunology 20, 233–239 (1971).

    PubMed  CAS  Google Scholar 

  • Pardee, A. B., K. Paigen, and L. S. Prestidge: A study of the ribonucleic acid of normal and chloromycetin-inhibited bacteria by zone electrophoresis. Biochim. Biophys. Acta 23, 162–173 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Pardee, A. B., and L. S. Prestidge: The dependence of nucleic acid synthesis on the presence of amino acids in E. coli. J. Bacteriol. 71, 677–683 (1956).

    PubMed  CAS  Google Scholar 

  • Pestka, S.: Studies on the formation of transfer ribonucleic acid-ribosome complexes. V. On the function of a soluble transfer factor in protein synthesis. Proc. Natl. Acad. Sci. U.S. 61, 726–733 (1968).

    Article  CAS  Google Scholar 

  • Pestka, S.: Studies on the formation of transfer ribonucleic acid-ribosome complexes. VI. Oligopeptide synthesis and translocation on ribosomes in the presence and absence of souble transfer factors. J. Biol. Chem. 244, 1533–1539 (1969a).

    PubMed  CAS  Google Scholar 

  • Pestka, S.: Translocation, aminoacyl-oligonucleotides, and antibiotic action. Cold Spring Harbor Symp. Quant. Biol. 34, 395–410 (1969b).

    Article  PubMed  CAS  Google Scholar 

  • Pestka, S.: Studies on the formation of transfer ribonucleic acid-ribosome complexes. X. Phenyl-alanyl-oligonucleotide binding to ribosomes and the mechanism of chloramphenicol action. Biochem. Biophys. Res. Commun. 36, 589–595 (1969c).

    Article  PubMed  CAS  Google Scholar 

  • Pestka, S.: Studies on the formation of transfer ribonucleic acid-ribosome complexes. XI. Antibiotic effects on phenylalanyl-oligonucleotide binding to ribosomes. Proc. Natl. Acad. Sci. U.S. 64, 709–714(1969 d).

    Article  CAS  Google Scholar 

  • Pestka, S.: Studies on the formation of transfer ribonucleic acid-ribosome complexes. VIII. Survey of the effect of antibiotics on n-acetyl-phenylalanyl-puromycin formation: Possible mechanism of chloramphenicol action. Arch. Biochem. Biophys. 136, 80–88 (1970 a).

    Article  PubMed  CAS  Google Scholar 

  • Pestka, S.: Studies on the formation of transfer ribonucleic acid-ribosome complexes. IX. Effect of antibiotics on translocation and peptide bond formation. Arch. Biochem. Biophys. 136, 89–96 (1970 b).

    Article  PubMed  CAS  Google Scholar 

  • Pestka, S.: Inhibitors of ribosome function. Ann. Rev. Microbiol. 25, 487–562 (1971).

    Article  CAS  Google Scholar 

  • Pestka, S.: Studies on transfer ribonucleic acid-ribosome complexes. XIX. Effect of antibiotics on peptidyl-puromycin synthesis on polyribosomes from Escherichia coli. J. Biol. Chem. 247, 4669–4678 (1972).

    PubMed  CAS  Google Scholar 

  • Pestka, S., B. H. Heck, and E.M. Scolnick: A convenient assay for mono-, di, and oligophenyl-alanines. Anal. Biochem. 28, 376–384 (1969).

    Article  CAS  Google Scholar 

  • Pestka, S., T. Hishizawa, and J. L. Lessard: Studies on the formation of transfer ribonucleic acid-ribosome complexes. XIII. Aminoacyl-oligonucleotide binding to ribosomes: Characteristics and requirements. J. Biol. Chem. 245, 6208–6219 (1970).

    PubMed  CAS  Google Scholar 

  • Peterson, R. F., P. S. Cohen and H. L. Ennis: Properties of T4 messenger RNA synthesized in the absence of protein synthesis. Virology 48, 201–206 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Piffaretti, J. C., B. Allet, and J. S. Pitton: Analogy between in vivo and in vitro biological effect of chloramphenicol and its acetylated derivatives. FEBS Letters 11, 26–28 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Primakoff, P., and P. Berg: Stringent control of transcription of phage ø80psu3. Cold Spring Harbor Symp. Quant. Biol. 35, 391–396 (1970).

    Article  CAS  Google Scholar 

  • Rebstock, M. C., H. M. Crooks, J. Controulis, and Q. R. Bartz: Chloramphenicol (Chloromycetin). IV. Chemical studies. J. Am. Chem. Soc. 71, 2458–2462 (1949).

    Article  CAS  Google Scholar 

  • Rendi, R.: The effect of chloramphenicol on the incorporation of labeled amino acids into proteins by isolated subcellular fractions from rat liver. Exptl. Cell Res. 18, 187–189 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Rendi, R., and S. Ochoa: Effect of chloramphenicol on protein synthesis in cell-free preparation of Escherichia coli. J. Biol. Chem. 237, 3711–3713 (1962).

    PubMed  CAS  Google Scholar 

  • Richert, N. J. and J. D. Hare: Distinctive effects of inhibitors of mitochondrial function on Rous sarcoma virus replication and malignant transformation. Biochem. Biophys. Res. Commun. 46, 5–10 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Ringrose, P. S., and R. W. Lambert: The action of novel chloramphenicol analogues on prokaryotic and eukaryotic systems. Biochim. Biophys. Acta, 299, 374–384 (1973).

    Google Scholar 

  • Rychík, I.: Release of lysine peptides by puromycin from polylysyl-transfer ribonucleic acid in the presence of ribosomes. Biochim. Biophys. Acta 114, 425–427 (1966).

    Google Scholar 

  • Rychík, I., J. Cerná, S. Chladek, J. Zemlicka, and Z. Haladova: Substrate specificity of ribosomal peptidyl transferase: 2’(3’)-O-aminoacyl nucleosides as acceptors of the peptide chain on the amino acid site. J. Mol. Biol. 43, 13–24 (1969).

    Article  Google Scholar 

  • Sabin, A. B.: Different effects of chloramphenicol, dactinomycin, and streptovitacin A on synthesis of tumor and virion antigens in SV40 virus-infected cells. Proc. Natl. Acad. Sci. U.S. 55, 1141–1148 (1966).

    Article  CAS  Google Scholar 

  • Salser, W., A. Bolle, and R. Epstein: Transcription during bacteriophage T4 development: A demonstration that distant sub-classes of the “early” RNA appear at different times and that some are “turned off” at late times. J. Mol. Biol. 49, 271–295 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J. F., D. P. Fan, and S. Brenner: A strong suppressor specific for UGA. Nature 214, 452–453 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Sarabhai, A. S., A. O. W. Stretton, S. Brenner, and A. Bolle: Co-linearity of the gene with the polypeptide chain. Nature 201, 13–17 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Scolnick, E., R. Tompkins, T. Caskey, and M. Nirenberg: Release factors differing in specificity for terminator codons. Proc. Natl. Acad. Sci. U.S. 61, 768–774 (1968).

    Article  CAS  Google Scholar 

  • Shaw, W. V., D. W. Bentley, and L. Sands: Mechanism of chloramphenicol resistance in Staphylococcus epidermidis. J. Bacteriol. 104, 1095–1105 (1970).

    PubMed  CAS  Google Scholar 

  • Shemyakin, M. N.: Khimia Antibiotikov 1, Moscow Acad. Sci. USSR (1961).

    Google Scholar 

  • Sinsheimer, R. L., C. A. Hutchinson, and B. Lindqvist: Bacterial phage øX174: viral functions. Molecular biology of viruses, ed. J. P. Colter and W. Paranchych, p. 175–192. New York: Academic Press 1967.

    Google Scholar 

  • Sinsheimer, R. L., B. Starman, C. Nagler and S. Guthrie: The process of infection with bacteriophage øX174. I. Evidence for a “replicative” form. J. Mol. Biol. 4, 142–160 (1962).

    Article  PubMed  CAS  Google Scholar 

  • So, A. G., and E. W. Davie: The incorporation of amino acids into protein in a cell-free system from yeast. Biochemistry 2, 132–136 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Sorm, F., and D. Grunberger: Inhibitory effect of chloramphenicol on the formation of some enzyme systems of Escherichia coli. Collection Czech. Chem. Commun. 19, 167–173 (1954).

    CAS  Google Scholar 

  • Speyer, J. F., P. Lengyel, C. Basilio, A. J. Wahba, R. S. Gardner, and S. Ochoa: Synthetic polynucleotides and the amino acid code. Cold Spring Harbor Symp. Quant. Biol. 28, 559–567 (1963).

    Article  CAS  Google Scholar 

  • Stent, G. S., and S. Brenner: A genetic locus for the regulation of ribonucleic acid synthesis. Proc. Natl. Acad. Sci. U.S. 47, 2005–2014 (1961).

    Article  CAS  Google Scholar 

  • Stow, M., B. J. Starkey, I. C. Hancock and J. Baddiley: Inhibition by chloramphenicol of glucose transfer in teichoic acid biosynthesis. Nature New Biol. 229, 56–57 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Svehag, S.: Antibody formation in vitro by separated spleen cells. Inhibition by actinomycin or chloramphenicol. Science 146, 659–661 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Symons, R. H., R. J. Harris, L. P. Clarke, J. F. Wheldrake, and W. H. Elliott. Structural requirements for inhibition of polyphenylalanine synthesis by aminoacyl and nucleotidyl analogues of puromycin. Biochim. Biophys. Acta 179, 248–250 (1969).

    PubMed  CAS  Google Scholar 

  • Talal, N., and E. D. Exum: Two classes of spleen ribosomes with different sensitivities to chloramphenicol. Proc. Natl. Acad. Sci. U.S. 55, 1288–1295 (1966).

    Article  CAS  Google Scholar 

  • Tanaka, K., H. Teraoka, T. Nagira, and M. Tamaki: [14C]Erythromycin-ribosome complex formation and non-enzymatic binding of aminoacyl-transfer RNA to ribosome-messenger RNA complex. Biochim. Biophys. Acta 123, 435–437 (1966).

    PubMed  CAS  Google Scholar 

  • Taubman, S. B., N. R. Jones, F. E. Young, and J. W. Corcoran: Sensitivity and resistance to erythromycin in Bacillus subtilis 168: The ribosomal binding of erythromycin and chloramphenicol. Biochim. Biophys. Acta 123, 438–440 (1966).

    PubMed  CAS  Google Scholar 

  • Teraoka, H.: Reversal of the inhibitory action of chloramphenicol on the ribosomal peptidyl-transfer reaction by erythromycin. Biochim. Biophys. Acta 213, 535–537 (1970).

    PubMed  CAS  Google Scholar 

  • Teraoka, H., K. Tanaka, and M. Tamaki: The comparative study on the effects of chloramphenicol, erythromycin and lincomycin on polylysine synthesis in an Escherichia coli cell-free system. Biochim. Biophys. Acta 174, 776–778 (1969).

    PubMed  CAS  Google Scholar 

  • Tessman, E. S.: Mutants of bacteriophage S13 blocked in infectious DNA synthesis. J. Mol. Biol. 17, 218–236 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Tissiéres, A., D. Schlessinger, and F. Gros: Amino acid incorporation into proteins by Escherichia coli ribosomes. Proc. Natl. Acad. Sci. U.S. 46, 1450–1463 (1960)

    Article  Google Scholar 

  • Traut, R. R., and R. E. Monro: The puromycin reaction and its relation to protein synthesis. J. Mol. Biol. 10, 63–72 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Vazquez, D.: Antibiotics which affect protein synthesis: The uptake of 14C-chloramphenicol by bacteria. Biochem. Biophys. Res. Commun. 12, 409–413 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Vazquez, D.: The binding of chloramphenicol by ribosomes from Bacillus megaterium. Biochem. Biophys. Res. Commun. 15, 464–468 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Vazquez, D.: Binding of chloramphenicol to ribosomes. The effect of a number of antibiotics. Biochim. Biophys. Acta 114, 277–288 (1966 a).

    PubMed  CAS  Google Scholar 

  • Vazquez, D.: 16th Symp. Soc. Gen. Microbiol., p. 169–191 (1966b).

    Google Scholar 

  • Vazquez, D.: Antibiotics affecting chloramphenicol uptake by bacteria. Their effect on amino acid incorporation in a cell-free system. Biochim. Biophys. Acta 114, 289–295 (1966c).

    PubMed  CAS  Google Scholar 

  • Vazquez, D.: Inhibitors of protein synthesis at the ribosome level; studies on their site of action. Life Sci. 6, 381–386 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Vogel, Z., A. Zamir, and D. Elson: The possible involvement of peptidyl transferase in the termination step of protein biosynthesis. Biochemistry 8, 5161–5168 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Waller, J. P., T. Erdös, F. LeMoine, S. Guttman, and E. Sandrin: Inhibition of protein synthesis by aminoacyl 3’ (2’)-adenosine. Biochim. Biophys. Acta 119, 566–580 (1966).

    PubMed  CAS  Google Scholar 

  • Weber, M. J., and J. A. DeMoss: The inhibition by chloramphenicol of nascent protein formation in E. coli. Proc. Natl. Acad. Sci. U.S. 55, 1224–1230 (1966).

    Article  CAS  Google Scholar 

  • Weber,M. J., and J. A. DeMoss: Inhibition of the peptide bond synthesizing cycle by chloramphenicol. J. Bacteriol. 97, 1099–1105 (1969).

    PubMed  CAS  Google Scholar 

  • Weigert, M. G., and A. Garen: Base composition of nonsense codons in E. coli. Nature 206, 992–994 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Weisberger, A. S., S. Armentrout, and S. Wolfe.: Protein synthesis by reticulocyte ribosomes. I. Inhibition of polyuridylic acid-induced ribosomal protein synthesis by chloramphenicol. Proc. Natl. Acad. Sci. U.S. 50, 86–93 (1963).

    Article  CAS  Google Scholar 

  • Weisberger, A. S., T. M. Daniel, and A. Hoffman: Suppression of antibody synthesis and prolongation of homograft survival by chloramphenicol. J. Exptl. Med. 120, 183–196 (1964).

    Article  CAS  Google Scholar 

  • Weisberger, A. S., and S. Wolfe: Effect of chloramphenicol on protein synthesis. Federation Proc. 23, 976–983 (1964).

    CAS  Google Scholar 

  • Weisblum, B.: Macrolide resistance in Staphylococcus aureus. In: Drug action and drug resistance in bacteria. I. Macrolide Antibiotics (ed. by S. Mitsuhashi), p. 217–238. Baltimore: Univ. Park Press 1971.

    Google Scholar 

  • Weisblum, B., and J. Davies: Antibiotic inhibitors of the bacterial ribosome. Bacteriol. Rev. 32, 493–528 (1968).

    PubMed  CAS  Google Scholar 

  • Weissbach, H., B. Redfield, and N. Brot: Studies on the reaction of n-acetyl-phenylalanyl-tRNA with puromycin. Arch. Biochem. Biophys. 127, 705–710 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Wintersberger, E.: Proteinsynthese in isolierten Hefe-Mitochondrien. Biochem. Z. 341, 409–419 (1965).

    CAS  Google Scholar 

  • Wisseman, C. L., J. E. Smadel, F. E. Hahn, and H. E. Hopps: Mode of action of chloramphenicol. I. Action of chloramphenicol on assimilation of ammonia and on synthesis of proteins and nucleic acids in Escherichia coli. J. Bacteriol. 67, 662–673 (1954).

    PubMed  CAS  Google Scholar 

  • Wolfe, A. D., and F. E. Hahn: Mode of action of chloramphenicol. IX. Effects of chloramphenicol upon a ribosomal amino acid polymerization system and its binding to bacterial ribosome. Biochim. Biophys. Acta 95, 146–155 (1965).

    PubMed  CAS  Google Scholar 

  • Young, R. M., and D. Nakada: Defective ribosomes in chloramphenicol-treated Escherichia coli. J. Mol. Biol. 57, 457–473 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Yukioka, M., and S. Morisawa: Reversibility of chloramphenicol inhibition of the poly U directed polyphenylalanine synthesis by G factor and GTP. Biochem. Biophys. Res. Commun. 40, 1331– 1339 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Yukioka, M., and S. Morisawa: Enhancement of the phenylalanyl-oligonucleotide binding to the peptidyl recognition center of ribosomal peptidyl transferase and inhibition of the chloramphenicol binding to ribosomes. Biochim. Biophys. Acta 254, 304–315 (1971).

    PubMed  CAS  Google Scholar 

  • Yunis, A. A. and G. R. Bloomberg: Chloramphenicol toxicity: Clinical features and pathogenesis. Prog. Hematol. 4, 138–159 (1964).

    PubMed  CAS  Google Scholar 

  • Zinder, N. D., D. L. Engelhardt, and R. E. Webster: Punctuation in the genetic code. Cold Spring Harbor Symp. Quant. Biol. 31, 251–256 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Zipser, D.: UGA: A third class of suppressible polar mutants. J. Mol. Biol. 29, 441–445 (1967).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pestka, S. (1975). Chloramphenicol. In: Corcoran, J.W., Hahn, F.E., Snell, J.F., Arora, K.L. (eds) Mechanism of Action of Antimicrobial and Antitumor Agents. Antibiotics, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46304-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46304-4_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46306-8

  • Online ISBN: 978-3-642-46304-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics