Skip to main content

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 81))

Abstract

The biosynthetic capacity of an individual cell is dependent on its structure. The response of large population of cells reflects the aggregated response of individual cells. Individual cell’s differ from one and another. The use of population balance equations to describe the dynamic response of populations to perturbations in their environment is computationally difficult when both the structure of individual cells and their distribution within the population are important. We circumvent these computational problems by building highly structured models of individual cells and then using a finite-representation technique to model the whole population. Application of this technique to predicting protein production from recombinant DNA is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ataai, M.M. and M.L. Shuler. 1985a. Simulation of the growth pattern of a single cell of Escherichia coli under anaerobic conditions. Biotechnol. Bioeng. 27 (7): 1026–1035.

    Google Scholar 

  • Ataai, M.M. and M.L. Shuler. 1985b. Simulation of CFSTR through development of a mathematical model for anaerobic growth of Escherichia coli cell population. Biotechnol. Bioeng. 27 (7): 1051–1055.

    Article  Google Scholar 

  • Ataai, M.M. and M.L. Shuler. 1986. Mathematical model for the control of ColE1 type plasmid replication. Plasmid 16: 204–212.

    Article  Google Scholar 

  • Ataai, M.M. and M.L. Shuler. 1987. A mathematical model for prediction of plasmid copy number and genetic stability in Escherichia coli. Biotechnol. Bioeng. 30: 389–397.

    Article  Google Scholar 

  • Domach, M.M. and M.L. Shuler. 1984a. Testing of a potential mechanism for E. coli temporal cycle imprecision with a structured model. J. Theor. Biol. 106: 577–585.

    Google Scholar 

  • Domach, M.M. and M.L. Shuler. 1984b. A finite representation model for an asynchronous culture of E. coli. Biotechnol. Bioeng. 26: 877–884.

    Article  Google Scholar 

  • Domach, M.M., S.K. Leung, R.E. Cahn, G.G. Cocks, and M.L. Shuler. 1984. Computer model for glucose-limited growth of a single cell of Escherichia coli B/r A. Biotechnol. Bioeng. 26 (3): 203–216.

    Article  Google Scholar 

  • Fredrickson, A.G., D. Ramkrishna, and H.M. Tsuchiya. 1971. The necessity of including structure in mathematical models of unbalanced microbial growth. Chem. Eng. Symp. Series 67 (108): 53.

    Google Scholar 

  • Joshi, A. and B.O. Palsson. 1988. Escherichia coli growth dynamics: A three-pool biochemically based description. Biotechnol. Bioeng. 31:102–116.

    Article  Google Scholar 

  • Kim, B.G., J. Shu, L.A. Laffend, and M.L. Shuler. 1988. On predicting protein production from recombinant DNA in bacteria. Forefronts. (In Press)

    Google Scholar 

  • Lee, A.L., M.M. Ataai, and M.L. Shuler. 1984. Double substrate limited growth of Escherichia coli. Biotechnol. Bioeng. 26: 1398–1401.

    Article  Google Scholar 

  • Lee, A.L., M.M. Ataai, and M.L. Shuler. 1984. Double substrate limited growth of Escherichia coli. Biotechnol. Bioeng. 26: 1398–1401.

    Article  Google Scholar 

  • Nishimura, Y. and J.E. Bailey. 1980. On the dynamics of Cooper-HelmstetterDonachie procaryote populations. Math. Biosci. 51: 305.

    Article  MathSciNet  MATH  Google Scholar 

  • Nishimura, Y. and J.E. Bailey. 1981. Bacterial population dynamics in batch and continuous-flow microbial reactors. AlChE J. 27: 73.

    Article  Google Scholar 

  • Park, D.J.M. 1974. The hierarchial structure of metabolic networks and the construction of efficient metabolic simulators. J. Theor. Biol. 46: 31–74.

    Article  Google Scholar 

  • Peretti, S.W. and J.E. Bailey. 1986. A mechanistically detailed model of cellular metabolism for glucose-limited growth of Escherichia coli B/r. Biotechnol. Bioeng. 28: 1672.

    Article  Google Scholar 

  • Peretti, S.W. and J.E. Bailey. 1987. Simulations of host-plasmid interactions in Escherichia coli: Copy number, promoter strength, and ribosome binding site strength effects on metabolic activity and plasmid gene expression. Biotechnol. Bioeng. 29: 316–328.

    Article  Google Scholar 

  • Shu, J., P. Wu, and M.L. Shuler. 1987. Bistability in ammonium-limited cultures of Escherichia coli B/r. Chemical Eng. Comm. 58: 185–194. (Special issue in honor of Neal Amundson).

    Google Scholar 

  • Shu, J., P. Wu, and M.L. Shuler. 1987. Bistability in ammonium-limited cultures of Escherichia coli B/r. Chemical Eng. Comm. 58: 185–194. (Special issue in honor of Neal Amundson).

    Google Scholar 

  • Shuler, M.L. 1985. On the use of chemically structured models for bioreactors. Chemical Eng. Communications 36: 161–189.

    Article  Google Scholar 

  • Shuler, M.L., S. Leung, and C.C. Dick. 1979. A mathematical model for the growth of a single bacterial cell. Ann. N.Y. Acad. Sci. 326: 35–56.

    Article  Google Scholar 

  • Shuler, M.L. and M.M. Domach. 1983. Mathematical models of the growth of individual cells. Tools for testing biochemical mechanisms. In Foundations of.Biochemical Engineering: Kinetics and Thermodynamics in Biological Systems. Ed., H.W. Blanch, E.P. Papoutsakis, and G. Stephanapoulos. ACS Symp. Series 207, Am. Chem. Soc., Washington, D.C., pp. 93–133.

    Google Scholar 

  • Tsuchiya, H.M., A.G. Fredrickson, and R. Aris. 1966. Dynamics of mirobial cell populations. Adv. Chem. Eng. 6: 125.

    Article  Google Scholar 

  • Womack, J.E. and W. Messer. 1978. Stability of origin-RNA and its implications on the structure of the origin of replication in E. coli. In DNA Synthesis-Present and Future. I. Molineaux and M. Kohiyama, Eds, ( Plenum, New York ), pp. 41–48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shuler, M.L. (1989). Computer Models of Individual Living Cells in Cell Populations. In: Castillo-Chavez, C., Levin, S.A., Shoemaker, C.A. (eds) Mathematical Approaches to Problems in Resource Management and Epidemiology. Lecture Notes in Biomathematics, vol 81. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46693-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46693-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51820-4

  • Online ISBN: 978-3-642-46693-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics