Skip to main content

Molecular Phylogeny of Eumetazoa: Genes in Sponges (Porifera) Give Evidence for Monophyly of Animals

  • Chapter
Molecular Evolution: Evidence for Monophyly of Metazoa

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 19))

Abstract

At present, the universal phylogenetic tree exhibits a tripartite division of the living world and includes Bacteria (“eubacterial”), Archaea (“archebacterial”), and Eucarya (“eukaryotic”) branches (Woese et al. 1991) with the Progenote as the common ancestor (Woese 1987). It is difficult to assess the timely appearance of the first living organism. Some first decipherable evidence of early life has apparently been identified in Swaziland (South Africa) and Pilbara Supergroup (Western Australia) sediments, and dates back 3550 to 3000 Ma (million years) ago; these are stromatolites (see Walter 1996), microfossils, and particulate organic matter (reviewed in Schopf 1994). Eucarya are roughly subdivided further into Diplomonada, Microsporidia, slime molds, ciliates, fungi, plants, and animals (reviewed in Iwabe et al. 1989). Animals are grouped into unicellular Eukaryota, which may have arisen ≈1400 Ma ago (Schopf et al. 1973), and Metazoa, which probably evolved 1000 to 700 Ma ago (reviewed in Willmer 1994).

This review is dedicated to Professor Dr. G. Uhlenbruck (Universität Köln), a pioneer in Invertebrate Immunology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agnès F, Shamoon B, Dina C, Rosnet O, Birnbaum D, Galibert F (1994) Genomic structure of the downstream part of the human FLT3 gene: exon/intron conservation among genes encoding receptor tyrosine kinase ( RTK) of subclass III. Gene 145: 283–288

    PubMed  Google Scholar 

  • Akiyama K, Yokota K, Kagawa S, Shimbara N, Tamura T, Akioka H, Nothwang HG, Noda C, Tanaka K, Ichihara A (1994) cDNA cloning and interferon y down-regulation of proteasomal subunits X and Y. Science 265: 1231–1234

    PubMed  CAS  Google Scholar 

  • Allen BG, Walsh WP (1994) The biochemical basis of the regulation of smooth-muscle contraction. Trends Biochem Sci 19: 362–368

    PubMed  CAS  Google Scholar 

  • Aruffo A, Melnick MB, Linsley PS, Seed B (1991) The lymphocyte glycoprotein CD6 contains a repeated domain structure characteristic of a new family of cell surface and secreted proteins. J Exp Med 174: 949–952

    PubMed  CAS  Google Scholar 

  • Barnes RD (1980) Invertebrate zoology, 4th edn. Saunders, Philadelphia

    Google Scholar 

  • Biesalski HK, Doepner G, Tzimas G, Gamulin V, Schröder HC, Batel R, Nau H, Müller WEG (1992) Modulation of myb gene expression in sponges by retinoic acid. Oncogene 7: 1765–1774

    PubMed  CAS  Google Scholar 

  • Boguski MS, McCormick F (1993) Proteins regulating Ras and its relatives. Nature 366: 643–654

    PubMed  CAS  Google Scholar 

  • Bork P, Sander C, Valencia A, Bukau B (1992) A module of the DnaJ heat shock proteins found in malaria parasites. Trends Biochem Sci 17: 129

    PubMed  CAS  Google Scholar 

  • Britten R, Davidson EH (1969) Gene regulation for higher cells: a theory. Science 165: 349–357

    PubMed  CAS  Google Scholar 

  • Brundage RA, Fogarty KE, Tuft RA, Fay FS (1991) Calcium gradients underlying polarization and chemotaxis of eosinophiles. Science 254: 703–706

    PubMed  CAS  Google Scholar 

  • Buscema M, Van de Vyver G (1983) Variability of allograft rejection processes in Axinella verrucosa. Dev Comp Immunol 7: 613–616

    Google Scholar 

  • Campbell NA (1996) Biology. Benjamin Cummings, Menlo Park

    Google Scholar 

  • Cavalier-Smith T (1985) Eukaryotic gene number, non-coding DNA and genome size. In: Cavalier-Smith T (ed) The evolution of genome size. Wiley, New York

    Google Scholar 

  • Cavalier-Smith T (1991) Intron phylogeny: a new hypothesis. Trends Genet 7: 145–148

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T, Allsopp MTEP, Chao EE, Boury-Esnault N, Vacelet (1996) Sponge phylogeny, animal monophyly, and the origin of the nervous system: 18S rRNA evidence. Can J Zool 74: 2031–2045

    CAS  Google Scholar 

  • Cheng H, Bjerknes M, Chen H (1996) CRP-ductin: gene expressed in intestinal crypts and in pancreatic and hepatic ducts. Anat Rec 244: 327–343

    PubMed  CAS  Google Scholar 

  • Christen R, Ratto A, Baroin A, Perasso R, Grell KG, Adoutte A (1991) An analysis of the origin of metazoans, using comparisons of partial sequences of the 28S RNA, reveals an early emergence of triploblasts. EMBO J 10: 499–503

    PubMed  CAS  Google Scholar 

  • Coutinho CC, Vissers S, Van de Vyver G (1994) Evidence of homeobox genes in the freshwater sponge Ephydatia fluviatilis. In: Soest RWM van, Kempen TMG van, Braekman JC (eds) Sponges in time and space. Balkema Press, Rotterdam, pp 385–388

    Google Scholar 

  • Dangott LJ, Jordan JE, Bellet RA, Galbers DL (1989) Cloning of the mRNA for the protein that crosslinks to the egg peptide speract. Proc Natl Acad Sci USA 86: 2128–2132

    PubMed  CAS  Google Scholar 

  • Darnell JE (1978) Implications of RNA-RNA splicing in evolution of eukaryotic cells. Science 202: 1257–1260

    PubMed  CAS  Google Scholar 

  • De Robertis EM, Morita EA, Cho KWY (1991) Gradient fields and homeobox genes. Development 112: 669–678

    PubMed  Google Scholar 

  • Delage Y (1892) Embryogenèse des éponges siliceuses. Arch Zool Exp Gén 10: 345–498

    Google Scholar 

  • Diehl-Seifert B, Uhlenbruck G, Geisert M, Zahn RK, Müller WEG (1985) Physicochemical and functional characterization of the polymerization process of the Geodia cydonium lectin. Eur J Biochem 147: 517–523

    PubMed  CAS  Google Scholar 

  • Doolittle WF (1978) Genes in pieces: were they ever together? Nature 272: 581–582

    Google Scholar 

  • Doolittle WF, Brown JR (1994) Tempo, mode, the progenote, and the universal root. Proc Natl Acad Sci USA 91: 6735–6742

    Google Scholar 

  • Elomaa O, Kangas M, Sahlberg C, Tuukkanen J, Sormunen R, Liakka A, Thesleff I, Kraal G, Tryggvason K (1995) Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell 80: 603–609

    PubMed  CAS  Google Scholar 

  • Exposito JY, Garrone R (1990) Characterization of a fibrillar collagen gene in sponges reveals the early evolutionary appearance of two collagen families. Proc Natl Acad Sci USA 87: 6669–6673

    PubMed  CAS  Google Scholar 

  • Field KG, Olsen GJ, Lane DJ, Giovannoni SJ, Ghiselin MT, Raff EC, Pace NR, Raff RA (1988) Molecular phylogeny of the animal kingdom. Science 239: 748–753

    PubMed  CAS  Google Scholar 

  • Freeman M, Ashkenas J, Rees DJ, Kingsley DM, Copeland NG, Jenkins NA, Krieger M (1990) An ancient, highly conserved family of cysteine-rich protein domains revealed by cloning type I and type II murine macrophage scavenger receptors. Proc Natl Acad Sci USA 87: 8810–8814

    PubMed  CAS  Google Scholar 

  • Friedman J, Trahey M, Weissman I (1993) Cloning and characterization of cyclophilin C-associated protein: a candidate for natural cellular ligand for cyclophilin C. Proc Natl Acad Sci USA 90: 6815–6819

    PubMed  CAS  Google Scholar 

  • Gamulin V, Rinkevich B, Schäcke H, Kruse M, Müller IM, Müller WEG (1994) Cell adhesion receptors and nuclear receptors are highly conserved from the lowest Metazoa [marine sponges] to vertebrates. Biol Chem Hoppe-Seyler 375: 583–588

    PubMed  CAS  Google Scholar 

  • Gamulin V, Skorokhod A, Kaysan V, Müller IM, Müller WEG (1997) Experimental indication against blockwise evolution of metazoan protein molecules: example, receptor tyrosine kinase gene from the sponge Geodia cydonium. J Mol Evol 44: 242–252

    PubMed  CAS  Google Scholar 

  • Geer P, Hunter T, Lindberg RA (1994) Receptor protein-tyrosine kinases and their signal transduction pathways. Annu Rev Cell Biol 10: 251–337

    PubMed  Google Scholar 

  • Georgopoulos C, Liberek K, Zylicz M, Ang D (1994) Properties of the heat shock proteins of Escherichia coli and the autoregulation of the heat shock response. In: Morimoto RI, Tissères A, Georgopoulos C (eds) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 209–249

    Google Scholar 

  • Gilbert W (1987) The exon theory of genes. Cold Spring Harbor Symp Quant Biol 52: 901–905

    PubMed  CAS  Google Scholar 

  • Gilbert W, Marchionni M, McKnight G (1986) On the antiquity of introns. Cell 46: 151–154

    PubMed  CAS  Google Scholar 

  • Goldberger G, Bruns GA, Rits M, Edge MD, Kwiatkowski DJ (1987) Human complement factor I: analysis of cDNA-derived primary structure and assignment of its gene to chromosome 4. J Biol Chem 262: 10065–10071

    PubMed  CAS  Google Scholar 

  • Gramzow M, Schröder HC, Fritsche U, Kurelec B, Robitzki A, Zimmermann H, Friese K, Kreuter MH, Müller WEG (1989) Role of phospholipase A2 in the stimulation of sponge cell proliferation by the homologous lectin. Cell 59: 939–948

    PubMed  CAS  Google Scholar 

  • Greenberg ME, Ziff EB (1984) Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature 311: 433–438

    PubMed  CAS  Google Scholar 

  • Grotzinger JP, Bowring SA, Saylor B, Kauffmann AJ (1995) New biostratigraphic and geochronologic constraints on early animal evolution. Science 270: 598–604

    CAS  Google Scholar 

  • Hadzi J (1963) The evolution of the Metazoa. Pergamon Press, Oxford

    Google Scholar 

  • Haeckel E (1866) Generelle Morphologie der Organismen, Zweiter Band. Allgemeine Entwicklungsgeschichte der Organismen. Georg Reimer, Berlin

    Google Scholar 

  • Haeckel E (1868) Natürliche Schöpfungsgeschichte. Georg Reimer, Berlin, pp 383–432

    Google Scholar 

  • Haga T, Haga K, Hulme CE (1990) Solubilization, purification, and molecular characterization of receptors: principles and strategy. In: Hulme EC (ed) Receptor biochemistry. IRL Press, Oxford, pp 1–50

    Google Scholar 

  • Halanych KM (1991) 5S ribosomal RNA sequences inappropriate for phylogenetic reconstruction. Mol Biol Evol 8: 249–253

    CAS  Google Scholar 

  • Hardie G, Hanks S (1995) The protein kinase FactsBook: protein-tyrosine kinases. Academic Press, London

    Google Scholar 

  • Henkart P, Humphreys S, Humphreys T (1973) Characterization of sponge aggregation factor. A unique proteoglycan complex. Biochemistry 12: 3045–3050

    PubMed  CAS  Google Scholar 

  • Hightower LE, Sadis SE, Takenaka, IM (1994) Interactions of vertebrate hsc70 and hsp70 with unfolded proteins and peptides. In: Morimoto RI, Tissières A, Georgopoulus C (eds) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor Laboratory, New York pp 179–207

    Google Scholar 

  • Hildemann WH, Johnston IS, Jokiel PL (1979) Immunocompetence in the lowest metazoan phylum: transplantation immunity in sponges. Science 204: 420–422

    PubMed  CAS  Google Scholar 

  • Hilt W, Wolf DH (1996) Proteasomes: destruction as a programme. Trends Biochem Sci 21: 96–102

    PubMed  CAS  Google Scholar 

  • Hirabayashi J, Kasai K (1993) The family of metazoan metal-independent β-galactoside-binding lectins: structure, function and molecular evolution. Glycobiology 3: 297–304

    PubMed  CAS  Google Scholar 

  • Howard JC (1995) Supply and transport of peptides presented by class I MHC molecules. Curr Biol 7: 69–76

    CAS  Google Scholar 

  • Hunkapiller T, Goverman J, Koop BF, Hood L (1989) Implications of the diversity of the immunoglobulin gene superfamily. Cold Spring Harbor Symp Quant Biol 54: 15–29

    PubMed  CAS  Google Scholar 

  • Hunter T, Lindberg RA, Middlemas DS, Tracy S, Geer P (1992) Receptor protein kinases and phosphatases. Cold Spring Harbor Symp Quant Biol 58: 25–41

    Google Scholar 

  • Hyman LH (1951) The invertebrates. McGraw-Hill, New York

    Google Scholar 

  • Imsiecke G, Borojevic R, Custodio M, Müller WEG (1994) Retinoic acid acts as a morphogen in freshwater sponges. Invertebr Reprod Dev 26: 89–98

    CAS  Google Scholar 

  • Imsiecke G, Custodio M, Borojevic R, Steffen R, Moustafa MA, Müller WEG (1995) Genome size and chromosomes in marine sponges [Suberites domuncula, Geodia cydonium]. Cell Biol Intern 19: 995–1000

    CAS  Google Scholar 

  • Iwabe N, Kuma K, Hasegawa M, Osawa S, Miyata T (1989) Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees and duplicated genes. Proc Natl Acad Sci USA 86: 9355–9359

    PubMed  CAS  Google Scholar 

  • Jaenicke R (1994) Eye-lens proteins: structure, superstructure, stability, genetics. Naturwissenschaft 81: 423–429

    CAS  Google Scholar 

  • Jameson R (1811) Catalogue of animals of the class of Vermes, found in the Firth of Forth and other parts of Scotland. Mem Werner Soc 1: 556–565

    Google Scholar 

  • Kasai KI, Hirabayashi J (1996) Galectins: a family of animal lectins that decipher glycocodes. J Biochem 119: 1–8

    PubMed  CAS  Google Scholar 

  • Kent S (1878) Notes on the embryology of sponges. Ann Mag Nat Hist 5,2: 139–156

    Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Knoll AH (1994) Proterozoic and Early Cambrian protists: evidence for accelerating evolutionary tempo. Proc Natl Acad Sci USA 91: 6743–6750

    PubMed  CAS  Google Scholar 

  • Kodama R, Eguchi G (1994) Gene regulation and differentiation in vertebrate ocular tissues. Curr Opin Genet Dev 4: 703–708

    PubMed  CAS  Google Scholar 

  • Koths K, Taylor E, Halenbeck R, Casipit C, Wang A (1993) Cloning and characterization of a human Mac-2-binding protein, a new member of the superfamily defined by the macrophage scavenger receptor cysteine-rich domain. J Biol Chem 268: 14225–14249

    Google Scholar 

  • Koziol C, Wagner-Hülsmann C, Mikoc A, Gamulin V, Kruse M, Pancer Z, Schäcke H, Müller WEG (1996) Cloning of a heat-inducible biomarker, the cDNA encoding the 70-kDa heat shock protein, from the marine sponge Geodia cydonium: response to natural stressors. Mar Ecol Prog Ser 136: 153–161

    CAS  Google Scholar 

  • Koziol C, Kruse M, Batel R, Badria FA, Müller IM, Müller WEG (1997) Characterization of cDNAs encoding DnaJ from the marine sponge Geodia cydonium: increased gene expression in response to heat shock. Mar Ecol Progr Ser; in press

    Google Scholar 

  • Krasko A, Müller WEG (1997) Evolutionary relationships of the metazoan ßy-crystallins, including the one from the marine sponge Geodia cydonium. Proc R Soc Biol Sci (in press)

    Google Scholar 

  • Krasko A, Scheffer U, Koziol C, Pancer Z, Batel R, Badria FA, Müller WEG (1997) Diagnosis of sublethal stress in the marine sponge Geodia cydonium: application of the 70-kDa heat shock protein and of the novel biomarker, the Rab GDP-dissociation inhibitor, as a probe. Aquat Toxicol 37: 157–168

    CAS  Google Scholar 

  • Kruse M, Gamulin V, Cetkovic H, Pancer Z, Mueller IM, Müller WEG (1996) Molecular evolution of the metazoan protein kinase C multigene family. J Mol Evol 43: 374–383

    PubMed  CAS  Google Scholar 

  • Kuhns WJ, Popescu O, Burger MM, Misevic G (1995) Sulfate restriction induces hypersecretion of the adhesion proteoglycan and cell hypomotility associated with increased 355042- uptake and expression of a band 3 like protein in the marine sponge Microciona prolifera. J Cell Biochem 57: 71–89

    PubMed  CAS  Google Scholar 

  • Labat-Robert J, Robert L, Auger C, Lethias C, Garrone R (1981) Fibronectin-like protein in Porifera: its role in cell aggregation. Proc Natl Acad Sci USA 78: 6261–6265

    PubMed  CAS  Google Scholar 

  • Lafay B, Boury-Esnault N, Vacelet J, Christen R (1992) An analysis of partial 28S ribosomal RNA sequences suggests early radiation of sponges. BioSystems 28: 139–151

    PubMed  CAS  Google Scholar 

  • Law SK, Micklem KJ, Shaw JM, Zhang XP, Dong Y, Willis AC, Mason DY (1993) A new macrophage differentiation antigen which is a member of the scavenger receptor superfamily. Eur J Immunol 23: 2320–2325

    PubMed  CAS  Google Scholar 

  • Ledger PW (1975) Septate junctions in the calcareous sponge Syncon ciliatum. Tissue Cell 7: 13–18

    PubMed  CAS  Google Scholar 

  • Lendenfeld R v (1903) Tetraxonia. In: Das Tierreich–Porifera, 19. Lief Reimer, Berlin, pp 113–227

    Google Scholar 

  • Lentz TL (1966) Histochemical localization of neurohumors in a sponge. J Exp Zool 162: 171–180

    Google Scholar 

  • Li WH, Graur D (1991) Fundamentals in molecular evolution. Sinnauer Assoc, Sunderland, Massachusetts

    Google Scholar 

  • Li WH, Luo CC, Wu CI (1985) Evolution of DNA sequences. In: Maclntyre RJ (ed) Molecular evolutionary genetics. Plenum Press, New York, pp 1–94

    Google Scholar 

  • Li WH, Tanimura M, Sharp PM (1987) An evaluation of the molecular clock hypothesis using mammalian DNA sequences. J Mol Evol 25: 330–342

    PubMed  CAS  Google Scholar 

  • Loomis WF (1988) Four billion years: an assay on the evolution of genes and organisms. Sinnauer Assoc, Sunderland, Massachusetts

    Google Scholar 

  • Lorenz B, Bohnensack R, Gamulin V, Steffen R, Müller WEG (1996) Regulation of motility of cells from marine sponges by calcium ions. Cell Signal 8: 517–524

    PubMed  CAS  Google Scholar 

  • Martin GR, Timpl R (1987) Laminin and other basement membrane components. Annu Rev Cell Biol 3: 57–85

    PubMed  CAS  Google Scholar 

  • Mayer RJ, Arnold J, Laszlo L, Landon M, Lowe J (1991) Ubiquitin in health and disease. Biochim Biophys Acta 1089: 141–157

    PubMed  CAS  Google Scholar 

  • Mayer WE, Tichy H (1995) A cDNA clone from the sea lamprey Pteromyzon marinus coding for a scavenger receptor Cys-rich ( SRCR) domain protein. Gene 164: 267–271

    PubMed  CAS  Google Scholar 

  • McLachlan AD, Kam J (1982) Periodic charge distributions in the myosin rod amino acid sequence match cross-bridge spacings in muscle. Nature 299: 226–231

    PubMed  CAS  Google Scholar 

  • Mehl D, Müller I, Müller WEG (1997) Molecular biological and palaeontological evidence that Eumetazoa, including Porifera (sponges), are of monophyletic origin. In: Proc Int Conf Sponge Science, 12–16 March 1996, Otsu, Japan. Springer, Berlin Aeidelberg New York (in press)

    Google Scholar 

  • Mehlhorn H (ed) (1989) Grundriß der Zoologie. Fischer, Stuttgart

    Google Scholar 

  • Merck KB, Groenen PJTA, Voorter CEM, de Haard-Hoekman WA, Horwitz J, Bloemendal H, de Jong WW (1993) Structural and functional similarities of bovine a-crystallin and mouse small heat-shock protein: a family of chaperones. J Biol Chem 268: 1046–1052

    PubMed  CAS  Google Scholar 

  • Morris PL (1993) The developmental role of the extracellular matrix suggests a monophyletic origin of the kingdom Animalia. Evolution 47: 152–165

    Google Scholar 

  • Mukai H (1992) Allogeneic recognition and sex differentiation in chimeras of the freshwater sponge Ephydatia muelleri. J Exp Zool 264: 298–311

    Google Scholar 

  • Müller WEG (1982) Cell membranes in sponges. Int Rev Cytol 77: 129–181

    Google Scholar 

  • Müller WEG (1995) Molecular phylogeny of Metazoa [animals]: monophyletic origin. Naturwissenschaft 82: 321–329

    Google Scholar 

  • Müller WEG, Zahn RK (1973) Purification and characterization of a species-specific aggregation factor in sponges. Exp Cell Res 80: 95–104

    PubMed  Google Scholar 

  • Müller WEG, Schäcke H (1996) Characterization of the receptor protein-tyrosine kinase gene from the marine sponge Geodia cydonium. Prog Mol Subcell Biol 17: 183–208

    PubMed  Google Scholar 

  • Müller WEG, Müller IM (1997) Primordial endocrinology in the lowest invertebrates: the porifera. In: Dorn A (ed) Reproductive biology of invertebrates. J Wiley, Chichester (in press)

    Google Scholar 

  • Müller WEG, Müller I, Zahn RK, Kurelec B (1976) Species-specific aggregation factor in sponges; VI. aggregation receptor from the cell surface. J Cell Sci 21: 227–241

    PubMed  Google Scholar 

  • Müller WEG, Rottmann M, Diehl-Seifer B, Kurelec B, Uhlenbruck G, Schröder HC (1987) Role of the aggregation factor in the regulation of phosphoinositide metabolism in sponges. Possible consequences on calcium efflux and on mitogenesis. J Biol Chem 262: 9850–9858

    PubMed  Google Scholar 

  • Müller WEG, Müller IM, Gamulin V (1994) On the monophyletic evolution of the Metazoa. Braz J Med Biol Res 27: 2083–2096

    PubMed  Google Scholar 

  • Müller WEG, Müller IM, Rinkevich B, Gamulin V (1995) Molecular evolution: evidence for the monophyletic origin of multicellular animals. Naturwissenschaft 82: 36–38

    Google Scholar 

  • Müller WEG, Steffen R, Rinkevich B, Matranga V, Kurelec B (1996) Multixenobiotic resistance mechanism in the marine sponge Suberites domuncula: its potential applicability for the evaluation of environmental pollution. Mar Biol 125: 165–170

    Google Scholar 

  • Müller WEG, Blumbach B, Wagner-Hülsmann C, Lessel U (1997) Galectins in the phylogenetically oldest metazoa, the sponges [Porifera]. Trends Glycosci Glycotechnol 9: 123–130

    Google Scholar 

  • Nielsen C (1995) Animal evolution. Oxford University Press, Oxford

    Google Scholar 

  • Orgel LE, Crick FH (1980) Selfish DNA: the ultimate parasite. Nature 284: 604–607

    PubMed  CAS  Google Scholar 

  • Orlowski M (1990) The multicatalytic proteinase complex, a major extralysosomal proteolytic system. Biochemistry 29: 10289–10297

    PubMed  CAS  Google Scholar 

  • Pancer Z, Kruse M, Schäcke H, Scheffer U, Steffen R, Koväcs P, Müller WEG (1996a) Polymorphism in the immunoglobulin-like domains of the receptor tyrosine kinase from the sponge Geodia cydonium. Cell Adhes Commun 4: 327–339

    PubMed  CAS  Google Scholar 

  • Pancer Z, Scheffer U, Müller I, Müller WEG (1996b) Cloning of sponge (Geodia cydonium) and tunicate (Botryllus schlossen) proteasome subunit epsilon (PRCE): implications about the evolution of the vertebrate MHC-encoded homologue LMP7 ( PRCC ). Biochem Biophys Res Commun 228: 406–410

    PubMed  CAS  Google Scholar 

  • Pancer Z, Müller WEG (submitted) Extreme sequence divergence in the intron that splits the two Ig-like domains of RTK, within and among individuals: identification of a hyperactive evolutionary site in the marine sponge Geodia cydonium

    Google Scholar 

  • Pancer Z, Kruse M, Müller I, Mueller WEG (1997a) On the origin of adhesion receptors of metazoa: cloning of the integrin a subunit cDNA from the sponge Geodia cydonium Mol Biol Evol 14: 391–398

    PubMed  CAS  Google Scholar 

  • Pancer Z, Münkner J, Müller I, Müller WEG (1997b) A novel member of an ancient superfamily: sponge (Geodia cydonium,Porifera) putative protein that features scavenger receptor cysteine-rich repeats Gene (in press)

    Google Scholar 

  • Peters JM (1994) Proteasomes: protein degradation machines of the cell. Trends Biochem Sci 19: 377–382

    PubMed  CAS  Google Scholar 

  • Pfeifer K, Schröder HC, Rinkevich B, Uhlenbruck G, Hanisch F-G, Kurelec B, Scholz P, Müller WEG (1992) Immunological and biological identification of tumor necrosis factor in sponges: role of this factor in the formation of necrosis in xenografts. Cytokine 4: 161–169

    PubMed  CAS  Google Scholar 

  • Pfeifer K, Haasemann M, Gamulin V, Bretting H, Fahrenholz F, Müller WEG (1993a) S-type lectins occur also in invertebrates: high conservation of the carbohydrate recognition domain in the lectin genes from the marine sponge Geodia cydonium. Glycobiology 3: 179–184

    PubMed  CAS  Google Scholar 

  • Pfeifer K, Frank W, Schröder HC, Gamulin V, Rinkevich B, Batel R, Müller IM, Müller WEG (1993b) Cloning of the polyubiquitin gene from the marine sponge Geodia cydonium which is preferentially expressed during reaggregation of cells. J Cell Sci 106: 545–554

    PubMed  CAS  Google Scholar 

  • Rasmont R (1970) Some new aspects of the physiology of fresh-water sponges. In: Fry WG (ed) The biology of the Porifera. Symp Zool Soc Lond 25: 415–422

    Google Scholar 

  • Reiswig H (1971) In situ pumping activity of tropical Demospongiae. Mar Biol 9: 38–50

    Google Scholar 

  • Reitner J, Mehl D (1995) Early Paleozoic diversification of sponges: new data and evidences. Geol Paläont Mitt Innsbruck 20: 335–347

    Google Scholar 

  • Resnick D, Pearson A, Krieger M (1994) The SRCR superfamily: a family reminiscent of the Ig superfamily. Trends Biochem Sci 19: 5–8

    PubMed  CAS  Google Scholar 

  • Rodrigo AG, Bergquist PR, Bergquist PL, Reeves RA (1994) Are sponges animals? An investigation into the vagaries of phylogenetic interference. In: van Soest RWM, van Kempen TMG, Braekman JC (eds) Sponges in time and space. Balkema Press, Rotterdam, pp 47–54

    Google Scholar 

  • Rousset D, Agnès F, Lachaume P, André C, Galibert F (1995) Molecular evolution of the genes encoding receptor tyrosine kinase with immunoglobulinlike domains. J Mol Evol 41: 421–429

    PubMed  CAS  Google Scholar 

  • Salvini-Plawen L (1978) On the origin and evolution of the lower Metazoa. Z Zool Sys Evolutionsforsch 16: 40–88

    Google Scholar 

  • Sarà M, Vacelet J (1973) Ecologie des démosponges, Traité de zoologie: Spongiaires. Tome III ( 1 ) Grassé PP (ed), Masson, Paris, pp 462–576

    Google Scholar 

  • Schäcke H, Rinkevich B, Gamulin V, Müller IM, Müller WEG (1994a) Immunoglobulin-like domain is present in the extracellular part of the receptor tyrosine kinase from the marine sponge Geodia cydonium. J Mol Recognit 7: 272–276

    Google Scholar 

  • Schäcke H, Schröder HC, Gamulin V, Rinkevich B, Müller IM, Müller WEG (1994b) Molecular cloning of a tyrosine kinase gene from the marine sponge Geodia cydonium: a new member belonging to the receptor tyrosine kinase class II family. Mol Membr Biol 11: 101–107

    PubMed  Google Scholar 

  • Schäcke H, Schröder HC, Müller IM, Müller WEG, Gamulin V, Rinkevich B (1994c) The immunoglobulin superfamily includes members from the lowest invertebrates to the highest vertebrates. Immunol Today 15: 497–498

    PubMed  Google Scholar 

  • Schäcke H, Müller IM, Müller WEG (1994d) Tyrosine kinase from the marine sponge Geodia cydonium: the oldest member belonging to the receptor tyrosine kinase class II family. In: Müller WEG (ed) Use of aquatic invertebrates as tools for monitoring of environmental hazards. Gustav Fischer, Stuttgart, pp 200–211

    Google Scholar 

  • Scheffer U, Krasko A, Pancer Z, Müller WEG (1997a) Isolation and characterization of the cDNA clone encoding the serum response factor homolog in the marine sponge Geodia cydonium: high conservation of this transcription factor within Metazoa. Biol J Linn Soc (in press)

    Google Scholar 

  • Scheffer U, Koziol C, Pancer Z, Krasko A, Müller WEG (1997b) Sponges as biomarkers of the aquatic environment: application of molecular probes. In: Proc Int Conf Sponge Science, 1216 March 1996, Otsu, Japan. Springer, Berlin Heidelberg New York (in press)

    Google Scholar 

  • Schlesinger MJ, Ashburner M, Tissieres A (1982) Heat shock. From bacteria to man. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Schopf JW (1994) The oldest known records of life: early Archean stromatolites, microfossils, and organic matter. In: Bengtson S (ed) Early life on earty. Columbia University Press, New York, pp 193–206

    Google Scholar 

  • Schopf JW, Haugh BN, Molnar RE, Satterthwait DF (1973) On the development of metaphytes and metazoans. J Paleontol 47: 1–9

    Google Scholar 

  • Schwartz MA, Schaller MD, Ginsberg MK (1995) Integrins: emerging paradigms of the signal transduction. Annu Rev Cell Dev Biol 11: 9–99

    Google Scholar 

  • Seemüller E, Lupas A, Stock D, Löwe J, Huber R, Baumeister W (1995) Proteasome from Thermoplasma acidophilum: a threonine protease. Science 268: 579–582

    PubMed  Google Scholar 

  • Seimiya A, Ishiguro H, Miura K, Watanabe Y, Kurosawa Y (1994) Homeobox-containing genes in the most primitive metazoa, the sponges. Eur J Biochem 221: 219–225

    PubMed  CAS  Google Scholar 

  • Seino S, Seino M, Nishi S, Bell GI (1989) Structure of the human insulin receptor gene and characterization of its promoter. Proc Natl Acad Sci USA 86: 114–118

    PubMed  CAS  Google Scholar 

  • Shore P, Sharrocks AD (1995) The MADS-box family of transcription factors. Eur J Biochem 229: 1–13

    PubMed  CAS  Google Scholar 

  • Simon K, Zerial M (1993) Rab proteins and the road maps for intracellular transport. Neuron 11: 789–799

    Google Scholar 

  • Simpson TL (1984) The cell biology of sponges. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Smith LC, Hildemann WH (1986) Allogeneic cell interactions during graft rejection in Callyspongia diffusa (Porifera; Demospongia); a study with monoclonal antibodies. Proc R Soc Lond B 226: 465–377

    PubMed  CAS  Google Scholar 

  • Smothers JF, Dohlen CD v, Smith LH, Spall RD (1994) Molecular evidence that the Myxozoan protists are metazoans. Science 265: 1719–1721

    PubMed  CAS  Google Scholar 

  • Sollas WJ (1884) On the development of Halisarca lobularis (O. Schmidt) Q J 24: 603–612

    Google Scholar 

  • Steiner M, Mehl D, Reitner J, Erdtmann BD (1993) Oldest entirely preserved sponges and other fossils from the Lowermost Cambrian and a new facies reconstruction of the Yangtze Platform ( China ). Ber Geowiss Abh (E) 9: 293–329

    Google Scholar 

  • Sun H, Tonks NK (1994) The coordinated action of protein tyrosine phosphatases and kinases in cell signaling. Trends Biochem Sci 19: 480–485

    PubMed  CAS  Google Scholar 

  • Szathmary E, Maynard Smith J (1995) The major evolutionary transitions. Nature 374: 227–232

    PubMed  CAS  Google Scholar 

  • Takaishi K, Sasaki T, Karneyama T, Tsukita A, Takai Y (1995) Translocation of activated Rho from the cytoplasm to membrane ruffling area, cell-adhesion sites and cleavage furrows. Oncogene 11: 39–48

    PubMed  CAS  Google Scholar 

  • Tan JL, Ravid S, Spudich JA (1992) Control of nonmuscle myosins by phosphorylation. Annu Rev Biochem 61: 721–759

    PubMed  CAS  Google Scholar 

  • Theißen G, Saedler H (1995) MADS-box genes in plant ontogeny and phylogeny: Haeckel’s “biogenetic law” revisited. Curr Opin Genet Dev 5: 628–639

    PubMed  Google Scholar 

  • Thiney Y (1972) Morphologie et cytochimie ultrastructurale del’ oscule d’ Hippospongia communis LMK et de sa régénération. Thèse, Univ Claude Bernard, pp 1–63

    Google Scholar 

  • Tsai J, Douglas MG (1996) A conserved HPD sequence of the J-domain is necessary for YDJ1 stimulation of hsp70 ATPase activity at a site distinct from substrate binding. J Biol Chem 272: 9347–9354

    Google Scholar 

  • Valentine JM (1994) Late precambrian vilaterians: grades and clades. Proc Natl Acad Sci USA 91: 6751–6757

    PubMed  CAS  Google Scholar 

  • Valentine JW, Collins AG, Meyer CP (1993) Morphological complexity increase in metazoans. Palaeobiology 20: 131–142

    Google Scholar 

  • Valentine JW, Erwin DH, Jablonski D (1996) Developmental evolution of metazoan body plans: the fossil evidence. Dev Biol 173: 373–381

    PubMed  CAS  Google Scholar 

  • Vogel S (1977) Current-induced flow through living sponges in nature. Proc Natl Acad Sci USA 74: 2069–2071

    PubMed  CAS  Google Scholar 

  • Wagner-Hülsmann C, Bachinski N, Diehl-Seifert B, Blumbach B, Steffen R, Pancer Z, Müller WEG (1996) A galectin links the aggregation factor to cells in the sponge [Geodia cydonium] system. Glycobiology 6: 785–793

    PubMed  Google Scholar 

  • Wall D, Zylicz M, Georgopoulos C (1995) The conserved G/F motif of the DnaJ chaperone is necessary for the activation of the substrate binding properties of the DnaK chaperone. J Biol Chem 270: 2139–2144

    PubMed  CAS  Google Scholar 

  • Walter M (1996) Old fossils could be fractal frauds. Nature 383: 385–386

    CAS  Google Scholar 

  • Walter L, Rauh F, Günther E (1994) Comparative analysis of the three major histocompatibility complex-linked Hsp70 genes of the rat. Immunogenetics 40: 325–330

    PubMed  CAS  Google Scholar 

  • Weinbaum G, Burger MM (1973) A two-component system for surface guided reassociation of animal cells. Nature 244: 510–512

    PubMed  CAS  Google Scholar 

  • Wijngaard PL, Metzelaar MJ, MacHugh ND, Morrison WI, Clevers HC (1992) Molecular characterization of the WC1 antigen expressed specifically on bovine CD4–CD8-gamma delta T lymphocytes. J Immunol 149: 3273–3277

    PubMed  CAS  Google Scholar 

  • Williams AF, Barclay AN (1988) The immunoglobulin superfamily–domains for cell surface recognition. Annu Rev Immunol 6: 381–405

    PubMed  CAS  Google Scholar 

  • Willmer P (1994) Invertebrate relationships. Cambridge University Press, Cambridge

    Google Scholar 

  • Wistow G (1993) Lens crystallins: gene recruitment and evolutionary dynamism. Trends Biochem Sci 18: 301–306

    PubMed  CAS  Google Scholar 

  • Wistow GJ, Piatigorsky J (1988) Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. Annu Rev Biochem 57: 479–504

    PubMed  CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271

    PubMed  CAS  Google Scholar 

  • Woese CR, Achenbach L, Rouviere P, Mandelco L (1991) Archaeal phylogeny: reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition-induced artifacts. Syst Appl Microbiol 14: 364–371

    PubMed  CAS  Google Scholar 

  • Yarfitz S, Hurley JB (1994) Transduction mechanisms of vertebrate and invertebrate photoreceptors. J Biol Chem 269: 14329–14332

    PubMed  CAS  Google Scholar 

  • Yu Q, Reichert M, Brousseau T, Cleute Y, Burny A, Kettmann R (1990) Sequence of bovine CD5. Nucl Acids Res 18: 5296

    PubMed  CAS  Google Scholar 

  • Zipfel PF, Skerka C (1994) Complement factor H and related proteins: an expanding family of complement-regulatory proteins? Immunol Today 15: 121–126

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller, W.E.G. (1998). Molecular Phylogeny of Eumetazoa: Genes in Sponges (Porifera) Give Evidence for Monophyly of Animals. In: Müller, W.E.G. (eds) Molecular Evolution: Evidence for Monophyly of Metazoa. Progress in Molecular and Subcellular Biology, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48745-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48745-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-48747-7

  • Online ISBN: 978-3-642-48745-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics