Skip to main content

Different Levels of Nonlinear Shell Theory in Finite Element Stability Analysis

  • Conference paper
Buckling of Shells

Summary

On the basis of Kirchhoff-Love-hypothesis and small elastic strains a geometrically nonlinear theory of thin shells is derived in symbolic tensor notation. Furthermore, an incremental version for finite increments of the displacements is formulated and the corresponding incremental principle of virtual work. This is the starting point of FEM with curved triangular elements, each containing 63 kinematical DoFs. Different levels of geometrical nonlinearity are implemented in the developed computer programs for nonlinear, critical and postcritical calculations. As examples quadrilateral sections of circular cylindrical shells with different boundary conditions are investigated for normal pressure, normal point loads, axial loads and combined loads, considering additionally imperfections. Comparisons with published results are made as far as possible. The results show the validity of Donnell’s approximation in a wide range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koiter, W.T.: On the nonlinear theory of thin elastic shells. Proc. Koninkl. Ned. Akad. Wetenshap., Ser. B. 69 (1966) 1–54.

    MathSciNet  Google Scholar 

  2. Naghdi, P.M.: Foundations of elastic shell theory, in Progress in solid mechanics. Vol. 4, Amsterdam: North-Holland Publ. Co. 1963 1–9o.

    Google Scholar 

  3. Naghdi, P.M.: The theory of shells and plates, in Handbuch der Physik Vol. VI a/2, Berlin-Heidelberg-New York: Springer 1972 425–64o.

    Google Scholar 

  4. Simmonds, J.G. and D.A. Danielson: Nonlinear shell theory with finite rotation vector. Proc. Koninkl. Ned. Akad. Wetenshap., Ser. B 73 (1970) 460–478.

    MathSciNet  MATH  Google Scholar 

  5. Pietraszkiewicz, W.: Introduction to the non-linear theory of shells. Mitteilungen aus dem Institut für Mechanik, Nr. 10 (1977).

    Google Scholar 

  6. Berg, A.: Beiträge zur geometrisch nichtlinearen Theorie und inkrementellen Finite-Element-Berechnung dünner elastischer Schalen. Diss. Universität Hannover 1982, Forschungs- und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover, Nr. 82/3 (in press).

    Google Scholar 

  7. DonnelL, L.H.: A new theory for the buckling of thin cylinders under axial compression and bending. Trans. ASME 56 (1934) 795–806.

    Google Scholar 

  8. Schmidt, R. and W. Pietraszkiewicz: Variational principles in the geometrical non-linear theory of shells undergoing moderate rotations. Ing.-Arch. 50 (1981) 187–201.

    Google Scholar 

  9. Stumpf, H.: On the linear and nonlinear stability analysis in the theory of thin elastic shells. Ing.-Arch. 51 (1981) 195–213.

    MATH  Google Scholar 

  10. Koiter, W.T.: On the stability of elastic equilibrium, ch.5, Shells with finite deflections. Thesis Delft. H.J. Paris, Amsterdam (1945).

    Google Scholar 

  11. Basar, Y. and W.B. Krätzig: Struktur konsistenter Grundgleichungen für das Beul- und Nachbeulverhalten allgemeiner Flächentragwerke. Der Stahlbau 46 (1977) 138–146.

    Google Scholar 

  12. Wittek, U.: Beitrag zum Tragverhalten der Strukturen bei endlichen Verformungen unter besonderer Beachtung des Nachbeulmechanismus dünner Flächentragwerke. Technisch-wissenschaftliche Mitteilungen des Instituts für Konstruktiven Ingenieurbau Bochum, Nr. 80–1 (1980).

    Google Scholar 

  13. Stein, E.: Variational functionals in the geometrical nonlinear theory of thin shells and finite-element discretizations with applications to stability problems, in Theory of shells, W.T. Koiter and G.K. Mikhailov (Eds.), Amsterdam: North-Holland Publ. Co. 1980 509–535.

    Google Scholar 

  14. Argyris, J.H. and D. W. Scharpf: The SHEBA family of shell elements for the matrix displacement method. Aeron. J. Royal Aeron. Soc. 72 (1968) 873–883, 73 (1969) 423–426.

    Google Scholar 

  15. Stein, E. and M.H. Kessel: Numerische Methoden und deren Konvergenz zur statischen Berechnung geometrisch nichtlinearer Stabwerke im unter- und überkritischen Bereich. Ing.- Arch. 46 (1977) 323–335.

    Article  MATH  Google Scholar 

  16. Riks, E.: The application of Newton’s method to the problem of elastic stability. J. Appl. Mech. 39 (1972) 1060–1066.

    Article  ADS  MATH  Google Scholar 

  17. Wempner, G.A.: Discrete approximations related to nonlinear solids, Int. J. Solids Struct. 7 (1971) 1581–1599.

    Article  MATH  Google Scholar 

  18. Wessels, M.: Das statische und dynamische Durchschlagproblem der imperfekten flachen Kugelschale bei elastischer rotationssymmetrischer Verformung. Diss. Technische Universität Hannover (1977), Mitt. Inst. Statik Hannover 23 (1977).

    Google Scholar 

  19. Crisfield, M.A.: A fast incremental/iterative solution procedure that handles “snap-through”. Comp. & Struct. 13 (1981) 55–62.

    Article  MATH  Google Scholar 

  20. Brendel, B. and E. Ramm: Nichtlineare Stabilitätsuntersuchungen mit der Methode der Finiten Elemente. Ing.-Arch. 51 (1982) 337–362.

    Article  MATH  Google Scholar 

  21. de Boer, R. and H. Prediger: Tensorrechnung — Grundlagen für Ingenieurwissenschaften. Forschungsberichte aus dem Fachbereich Bauwesen der Universität Essen Gesamthochschule, Nr. 5 (1978).

    Google Scholar 

  22. de Boer, R. and H. Prediger: Tensorrechnung in der Mechanik — Ausgewählte Kapitel. Forschungsberichte aus dem Fachbereich Bauwesen der Universität Essen Gesamthochschule, Nr. 8 (1979).

    Google Scholar 

  23. Argyris, J.H.: Entwicklung von Finiten Element Methoden für die Berechnung von Schalen allgemeiner Form. Vortrag anläßlich des Schlußkolloquiums des DFG-Schwerpunktes “Flächentragwerke im konstruktiven Ingenieurbau”, 1980.

    Google Scholar 

  24. Horrigmoe, G.: Finite element instability analysis of freeform shells. Report Nr. 77–2 der Universität von Trondheim, Norwegen, 1977.

    Google Scholar 

  25. Sabir, A.B. and A.C. Lock: The application of finite elements to the large-deflection geometrically nonlinear behaviour of cylindrical shells. In Variational Methods in Engineering C.A. Brebbia and H. Tottenham (Eds.), Southampton: University Press 1972 7/54–7/65.

    Google Scholar 

  26. Brendel, B., L. Häfner, E. Ramm und J.M. Sättele: Programmdokumentation und Eingaliebeschreibung zum Programmsystem NISA., Bericht Inst. f. Baustatik Universität Stuttgart 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer, Berlin Heidelberg New York

About this paper

Cite this paper

Stein, E., Berg, A., Wagner, W. (1982). Different Levels of Nonlinear Shell Theory in Finite Element Stability Analysis. In: Ramm, E. (eds) Buckling of Shells. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-49334-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-49334-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49336-2

  • Online ISBN: 978-3-642-49334-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics