Skip to main content

A High-Precision Adaptive Procedure for Solving Kirchhoff Plates

  • Conference paper
Discretization Methods in Structural Mechanics
  • 202 Accesses

Summary

A procedure for numerical, high precision finite element calculation of stresses in Kirchhoff plates is proposed. Constant curvature triangles in mixed form are used. They represent a minimum of complementary energy for concentrated loads at the vertices. Moment isolines have been used for steering of a remeshing design code based on uniform distribution of a priori error estimates. The successive meshes are smoothed by an r-method and finally locally enriched guided by local a posteriori error estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morgenstern, D: Herleitung der Plattentheorie aus der dreidimensionalen Elasticitätsteori, Arc. Rat. Mech. Anal. 4 (1959) 145–152.

    Article  MathSciNet  MATH  Google Scholar 

  2. Timoshenko, S.: Theory of Plates and Shells, Mc Graw Hill, New York 19 40.

    Google Scholar 

  3. Babuska, I. and Scaloppa, T.: Benchmark Computation and Performance Evaluation for a Rhombic Plate Bending Problem, Int. J. Numerical Meth. in Eng. 28 (1989) 155–179.

    Article  MATH  Google Scholar 

  4. Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates, J. Appl. Mech. 12 (1945) 69–76.

    MathSciNet  Google Scholar 

  5. Mindlin, R.D.: Influence of rotatory intertia and shear in fluxural motions of isotropic elastic plates. J. Appl. Mech. 18 (1951) 31–38.

    MATH  Google Scholar 

  6. Zienkiewicz, O.C.; Taylor, R.L.; Papadopolous, P.: Onate, E.: Plate bending elements with discrete constraints: new triangular elements. Int. J. Num. Meth. Eng. 1989.

    Google Scholar 

  7. Arnold, D.N.; Falk, R.S.: A uniformly accurate finite element method for Mindlin-Reissner plate. Num. Math. 1989.

    Google Scholar 

  8. Zienkiewicz, O.C.; Zhu, J.Z.: The Essential Ingredients of Engineering FEM Analysis. Benchmark 19 89, p. 9.

    Google Scholar 

  9. Herrmann, L.R.: Finite-element bending analysis for plates. J. Eng. Mech. Div. ASCE, V. 93, EM5 (1967) 13–26.

    Google Scholar 

  10. Hellan, K.: Analysis of elastic plates in flexure by a simplified finite element method. Acta Polytechnica Scandinavica, CI46, Trondheim 1967.

    Google Scholar 

  11. Visser, W.: A Refined Mixed-Type Plate Bending Element. AIAA Journal, 7, (1969) 1801–1804.

    Article  MATH  Google Scholar 

  12. Johnson, C.: On the convergence of some mixed element methods in plate bending problems, Num. Meth. 21, 1973.

    Google Scholar 

  13. Eriksson, K. and Johnsson, C.: An adaptive finite element method for linear elliptic problems. Math. of Comp. 50 (1988) 361–383.

    Article  MATH  Google Scholar 

  14. Rank, E; and Zienkiewicz, O.C.; A simple error estimator in the finite element method. Coram. Appl. Num. Meth. 5, 1988.

    Google Scholar 

  15. Jin, H.; Wiberg, N-E.: Two-dimensional mesh generation, adaptive remeshing and refinement, under publication.

    Google Scholar 

  16. Zienkiewicz, O.C. and Zhu, J.Z.: A simple error estimator and adaptive procedure for practical engineering analysis, Int. J. Num. Eng. 24 (1987) 337–357

    Article  MathSciNet  MATH  Google Scholar 

  17. Löhner, R.; Morgan, K.; Zienkiewicz, O.C.: Adaptive grid refinement in finite element computations, in Accuracy Estimates, Wiley (1986) 281–297.

    Google Scholar 

  18. Akesson, B..: Rationalization of Lévy’s Plate Solution. Trans. Chalmers Univ. of Technology 252, Göteborg 1961.

    Google Scholar 

  19. Koiter, W.T. and Alblas, J.B.: On the Bending of Cantilever, Rectangular Plates, Proc. k. Ned. Ak. Wet. (B) 1954.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kjellman, M., Samuelsson, A. (1990). A High-Precision Adaptive Procedure for Solving Kirchhoff Plates. In: Kuhn, G., Mang, H. (eds) Discretization Methods in Structural Mechanics. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-49373-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-49373-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49375-1

  • Online ISBN: 978-3-642-49373-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics