Skip to main content

Structured Population Dynamics

  • Conference paper
Frontiers in Mathematical Biology

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 100))

Abstract

Population dynamics attempts to account for changes in the sizes of biological populations. This is a fundamental problem in biology that has occupied scientists’ attention since at least Aristotle. It is a problem of not only intrinsic interest, but of fundamental importance in other biological investigations as well. Models of population dynamics form the bases of models in ecology, genetics, theories of evolution, cell dynamics, epidemiology, resource management, bioeconomics, ecotoxicology, sociobiology and many other disciplines of the biological, medical, and environmental sciences. Given a biological population’s natural propensity for exponential growth and the finiteness of our natural world, at the heart of this problem is the fundamental problem of how population numbers are “regulated”, i.e. how they are kept from growing without bound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bonner, J. T. (1988): The Evolution of Complexity by Means of Natural Selection. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • Busenberg, S.N., Iannelli, M. (1985): Separable models in age-dependent population dynamics. J. Math. Biol. 22:145–173

    Article  MathSciNet  MATH  Google Scholar 

  • Caswell, H. (1989): Matrix Population Models. Sinauer Associates, Inc. Sunderland, Massachusetts

    Google Scholar 

  • Chesson, P.L. (1986): Environmental variation and the coexistence of species. Community Ecology (T. Case & J. Diamond, eds.), Harper & Row, New York:240–256

    Google Scholar 

  • Costantino, R.F., Desharnais, R.A. (1991): Population Dynamics and the Tribolium Model: Genetics and Demography. Mono, on Theo. & Appl. Gen. 13, Springer, Berlin

    Book  Google Scholar 

  • Crowe, K. M. (1992): A discrete size-structured competition model. Ph.D. dissertation, Interdisciplinary Program on Applied Mathematics, University of Arizona, Tucson,

    Google Scholar 

  • Cushing, J. M. (1979): Volterra Integrodifferential Equations in Population Dynamics, appearing in Mathematics of Biology (M. Iannelli editor), CIME Summer Workshop, Publicato de Liguori Editore, Napoli

    Google Scholar 

  • Cushing, J. M. (1982): Periodic Kolmogorov systems. SIAM J. Math. Anal. 13, no. 5:811–827

    Article  MathSciNet  MATH  Google Scholar 

  • Cushing, J. M. (1988): Nonlinear matrix models and population dynamics. Nat. Res. Mod. 2, no. 4:539–580

    MathSciNet  MATH  Google Scholar 

  • Cushing, J. M. (1989): A competition model for size-structured species. SIAM J. Appl. Math. 49:838–858

    Article  MathSciNet  MATH  Google Scholar 

  • Cushing, J. M. (1991a): Competing size-structured species. Mathematical Population Dynamics (Chapter 3), O. Arino, D.E. Axelrod, and M. Kimmel eds., Marcel Dekker, Inc., New York

    Google Scholar 

  • Cushing, J. M. (1991b): A simple model of cannibalism. Math. Biosci. 107, No. 1:47–72

    Article  MathSciNet  MATH  Google Scholar 

  • Cushing, J. M. (1992): Some delay models for juvenile vs. adult competition. Proc. Int. Conf. Diff Eqns & Appl. Biol & Pop. Dyns (Busenberg & Martelli, editors), Springer

    Google Scholar 

  • Cushing, J. M. (1992): A size-structured model for cannibalism. Theo. Pop. Biol. 42, no. 3:347–361

    Article  MathSciNet  MATH  Google Scholar 

  • Cushing, J. M. (1993): The dynamics of hierarchical age-structured populations, to appear. J. Math. Biol.

    Google Scholar 

  • Cushing, J. M., Li, J. (1989): On Ebenman’s model for the dynamics of a population with competing juveniles and adults. Bull. Math. Biol. 51, No. 6:687–713

    MATH  Google Scholar 

  • Cushing, J. M., Li, J. (1992): Intra-specific competition and density dependent juvenile growth. Bull Math. Biol. 53: 503–519

    Google Scholar 

  • Cushing, J. M., Saleem, M. (1982): A predator-prey model with age structure. J. Math. Biol 14:231–250

    Article  MathSciNet  MATH  Google Scholar 

  • DeAngelis, D. L., Gross, L. J. (1992): Individual-Based Models and Approaches in Ecology: Populations, Communities and Ecosystems, Chapman and Hall, New York

    Google Scholar 

  • Diekmann, O., Nisbet, R. M., Gurney, W. S. C., van den Bosch, F. (1986): Simple mathematical models for cannibalism: a critique and a new approach. Math. Biosci. 78:21–46

    Article  MathSciNet  MATH  Google Scholar 

  • Ebenman, B. (1987): Niche differences between age classes and intraspecific competition in age-structured populations. J. Theor. Biol 124:25–33

    Article  MathSciNet  Google Scholar 

  • Ebenman, B. (1988a): Competition between age classes and population dynamics. J. Theor. Biol. 131:389–400

    Article  MathSciNet  Google Scholar 

  • Ebenman, B. (1988b): Dynamics of age- and size-structured populations: intraspecific competition. Size-Structured Populations: Ecology and Evolution (Ebenman & Persson, eds.), Springer, Berlin, 127–139

    Chapter  Google Scholar 

  • Brooks, J. L., Dodson, S. I. (1965): Predation, body size and composition of plankton. Science 150:28–35.

    Article  Google Scholar 

  • Ebenman, B., Persson, L. (1988). Size 1-Structured Populations, Ecology and Evolution. Springer, Berlin

    Book  Google Scholar 

  • Fox, L. R. (1975): Cannibalism in natural populations. Ann. Rev. Ecol. Syst. 6:87–106

    Article  Google Scholar 

  • Freedman, H. I. (1980): Deterministic Mathematical Models in Population Ecology. Marcel Dekker, Inc., New York

    MATH  Google Scholar 

  • Gurtin, M. E., Levine, D. S. (1979): On predator-prey interactions with predation dependent on age of prey, Math. Biosci. 47:207–219

    Article  MathSciNet  MATH  Google Scholar 

  • Gurtin, M. E., Levine, D. S. (1982): On populations that cannibalize their young, SIAM J. Appl. Math. 42:94–108

    Article  MathSciNet  MATH  Google Scholar 

  • Gurtin, M. E., MacCamy, R. C. (1974): Nonlinear age-dependent population dynamics. Arch. Rat. Mech. Anal. 54:281–300

    Article  MathSciNet  MATH  Google Scholar 

  • Gurtin, M. E., MacCamy, R. C.(1979): Some simple models for nonlinear age-dependent population dynamics. Math. Biosc. 43:199–211 and 213–237

    Article  MathSciNet  MATH  Google Scholar 

  • Hastings, A. (1983): Age dependent predation is not a simple process. I. Continuous time models. Theo. Pop. Biol. 23:347–362

    Article  MathSciNet  MATH  Google Scholar 

  • Hastings, A. (1986): Interacting Age-Structured Populations, appearing in Mathematical Ecology: An Introduction (Hallam & Levin, editors), Series in Biomathematics Vol. 17, Springer, Berlin

    Google Scholar 

  • Hastings, A. (1987): Cycles in cannibalistic egg-larval interactions. J. Math. Biol. 24:651–666,

    Article  MathSciNet  MATH  Google Scholar 

  • Hastings, A., Costantino, R. F. (1987): Cannibalistic egg-larva interactions in Tribolium: an explanation for the oscillations in population numbers. Am. Nat. 130:36–52

    Article  Google Scholar 

  • Hastings, A., Wollkind, D. (1982): Age structure in predator-prey systems. I. A general model and a specific example. Theo. Pop. Biol. 21:44–56

    Article  MathSciNet  MATH  Google Scholar 

  • Hoppensteadt, F. (1975): Mathematical Theories of Populations: Demographics, Genetics, and Epidemics. SLAM Conf. Series on Appl. Math. Philadephia, Pa.

    MATH  Google Scholar 

  • Impagliazzo, J. (1980): Deterministic Aspects of Mathematical Demography. Biomathematics 13, Springer, Berlin

    Google Scholar 

  • Lefkovitch, L. P. (1965): The study of population growth in organisms grouped by stage. Biometrics 21:1–18

    Article  Google Scholar 

  • Levine, D. S. (1983): Models of age-dependent predation and cannibalism via the McKendrick equation. Comp. & Math, with Appl. 9, no. 3:403–414

    Article  MATH  Google Scholar 

  • Levine, D. S. (1983): Bifurcating periodic solutions for a class of age-structured predator-prey systems, Bull. Math. Biol. 45, no. 6:901–915

    MathSciNet  MATH  Google Scholar 

  • Lewis, E. G. (1942): On the generation and growth of a population. Sankhya 6:93–96

    Google Scholar 

  • Leslie, P. H. (1945): On the use of matrices in certain population mathematics. Biometrica 33:183–212

    Article  MathSciNet  MATH  Google Scholar 

  • Leslie, P. H. (1948): Some further notes on the use of matrices in population mathematics, Biometrika 35:213–245

    MathSciNet  MATH  Google Scholar 

  • Lomnicki, A. (1988): Population Ecology of Individuals. Monographs in Population Biology 25, Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • May, R. M. (1974): Stability and Complexity in Model Ecosystems. Monographs in Population Biology 6, Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • May, R. M., Conway, G. R., Hassell, M. P., Southwood, T. R. E. (1974): Time delays, density-dependence and single species oscillations. J. Anim. Ecol. 43:747–770

    Article  Google Scholar 

  • Maynard Smith, J. (1985): Evolution and the Theory of Games. Cambridge University Press, Cambridge

    Google Scholar 

  • McKendrick, A. G. (1926): Applications of mathematics to medical problems. Proc. Edin. Math. Soc. 44:98–130

    Article  Google Scholar 

  • Metz, J. A. J., Diekmann, O. (1986): The Dynamics of Physiologically Structured Populations. Lec. Notes in Biomath. 68, Springer, Berlin

    MATH  Google Scholar 

  • Neill, W. E. (1988): Responses to experimental nutrient perturbations in oligotrophic lakes: the importance of bottlenecks in size-structured populations. Size-Structured Populations: Ecology and Evolution (Ebenman & Persson, eds.), Springer, Berlin, 236–258

    Chapter  Google Scholar 

  • Persson, L. (1988): Asymmetries in competitive and predatory interactions in fish populations. Size-Structured Populations: Ecology and Evolution (Ebenman & Persson, eds.), Springer, Berlin, 185–218

    Google Scholar 

  • Polis, G. A. (1981): The evolution and dynamics of intraspecific predation. Ann. Rev. Ecol. Syst. 12:25–251

    Article  Google Scholar 

  • Polis, G. A. (1988): Exploitation competition and the evolution of interference, cannibalism, and intraguild predation in age/size-structured populations. Size-Structured Populations: Ecology and Evolution (Ebenman & Persson, eds.), Springer, Berlin, 185–202

    Chapter  Google Scholar 

  • Schoen, R. (1988): Modeling Multigroup Populations. Plenum Press, New York

    Google Scholar 

  • Scudo, F. M., Ziegler, J. R. (1978): The Golden Age of Theoretical Ecology: (1923–1940). Lec. Notes in Biomath., Vol. 22, Springer, Berlin

    MATH  Google Scholar 

  • von Foerster, H. (1959): Some remarks on changing populations. The Kinetics of Cellular Proliferation (F. Stholman Jr. ed.), 382–407, Grune & Stratton, New York

    Google Scholar 

  • Saints, K. (1987): Discrete and continuous models of age-structured population dynamics. Senior thesis, Harvey Mudd College

    Google Scholar 

  • Simmes, S. D. (1978): Age dependent population dynamics with nonlinear interactions. Ph.D. thesis, Department of Mathematics, Carnegie-Mellon University

    Google Scholar 

  • Sinko, J. W., Streifer, W. (1967): A new model for age-size structure of a population. Ecology 48:910–918

    Article  Google Scholar 

  • Tschumy, W. O. (1982): Competition between juveniles and adults in age-structured populations. Theor. Pop. Biol. 21:255–268

    Article  MathSciNet  MATH  Google Scholar 

  • Tucker, S. L., Zimmerman, S. O. (1988): A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables. SIAM J. Appl. Math. 48, no. 3:549–591

    Article  MathSciNet  MATH  Google Scholar 

  • Uribe, G.. (1993): On the relationship between continuous and discrete models for size-structured population dynamics. Ph.D. dissertation, Interdisciplinary Program on Applied Mathematics, University of Arizona, Tucson

    Google Scholar 

  • van den Bosch, R., Diekmann, O. (1986): Interactions between egg-eating predator and prey: the effect of the functional response and of age structure, IMA J. Math. Appl. Med. & Biol. 3:53–69

    Article  MathSciNet  MATH  Google Scholar 

  • van den Bosch, R., de Roos, A. M., Gabriel, W. (1988): Cannibalism as a life boat mechanism. J. Math. Biol. 26 (1988), 6(19–633)

    Article  Google Scholar 

  • Webb, G.F. (1985): Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, Inc., New York

    MATH  Google Scholar 

  • Werner, E. E. (1988): Size, scaling, and the evolution of complex life cycles. Size-Structured Populations: Ecology and Evolution (Ebenman & Persson, eds.), Springer, Berlin, 60–84

    Chapter  Google Scholar 

  • Werner, E. E., Gilliam, J. F. (1984): The ontogenetic niche and species interactions in size-structured populations. Ann. Rev. Ecol. Syst. 15:393–425

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cushing, J.M. (1994). Structured Population Dynamics. In: Levin, S.A. (eds) Frontiers in Mathematical Biology. Lecture Notes in Biomathematics, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-50124-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-50124-1_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-50126-5

  • Online ISBN: 978-3-642-50124-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics