Skip to main content

On Volterra Boundary Integral Equations of the First Kind for Nonstationary Stokes Equations

  • Chapter
Advances in Boundary Element Techniques

Part of the book series: Springer Series in Computational Mechanics ((SSCMECH))

Abstract

We are concerned here with slow viscous incompressible flow in a container or around a rigid body. The physical situation is described mathematically by the initial- boundary value problem for the nonstationary Stokes equations:

$$\upsilon _t - \nu \Delta \upsilon + \nabla _p = f\,\,{\rm in}\,\Omega _T \,{\rm or}\,\Omega _T^c ,$$
((1.1))
$${\rm div}\,\upsilon = 0\,\,{\rm in}\,\Omega _T \,{\rm or}\,\Omega _T^c ,$$
((1.2))
$$\upsilon = - \upsilon _\infty \,\,{\rm on}\,\partial \Omega _T ,$$
((1.3))
$$\upsilon ,p \to 0\,\,{\rm as}\left| x \right| \to \infty ,t > 0,$$
((1.4))
$$\upsilon = \upsilon _0 \,\,{\rm as}\,t = 0,x \in \Omega \,\,{\rm or}\,x \in \Omega ^c $$
((1.5))

Here denotes υ(t) the vector of uniform onset flow at infinity, w = υ + υ the velocity field, and p the scalar pressure field of the flow, which evolves from an initial state υ0. Further, \(\nu \sim {1 \over { R}e}\) is the dynamic viscosity of the medium. In a body-fixed frame, the flow region is Ω ⊂ 3 or \(\Omega ^C = \mathbb{R}^3 /\bar \Omega\), the boundary ∂Ω of which is assumed as sufficiently smooth (∂Ω ∈ C , e.g.). Further, Ω T = Ω × (0, T) (and so Ω c T , ∂ΩT) where (0, T) denotes a fixed finite time interval. The vector field ƒ includes the exterior forces (and virtually some small convective terms).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brebbia, C. A., The solution of time-dependent problems using boundary elements, Ed. Whiteman J. R., The Mathematics of Finite Elements and Applications, 5 (1985), 229–255.

    Google Scholar 

  2. Costabel, M., Boundary integral operators on Lipschitz domains: elementary results, SIAM J. Math. Anal, (1988), 613–626.

    Google Scholar 

  3. Costabel, M., Onishi, K., Wendland, W. L., A boundary element collocation method for the Neumann problem of the heat equation. Inverse and Ill-posed Problems, (1987), 369–384.

    Google Scholar 

  4. Costabel, M., Boundary integral operators for the heat equation. Integral Equ. Oper. Theory (1990).

    Google Scholar 

  5. Costabel, M., Wendland, W. L., Strong eUipticity of boundary integral operators, J. Reine Angew. Math., 372(1986), 39–63.

    MathSciNet  Google Scholar 

  6. Fabes, E. B., Lewis, J. E., Riviere, N. M., Boundary value problems for the Navier-Stokes equations, Amer. J. Math., 99 (1977), 626–668.

    Article  MathSciNet  MATH  Google Scholar 

  7. Fischer, T. M., An integral equtions procedure for the exterior 3D slow viscous flow. Integral Eqn. Oper. Th., 5 (1982), 490–505. 273–297.

    Article  MATH  Google Scholar 

  8. Hebeker, F. K., Efiicient boimdary element methods for 3D exterior viscous flows. Num. Meth. PDE, 2 (1986), 273–297.

    Article  MathSciNet  MATH  Google Scholar 

  9. Hebeker, F. K., Characteristics and boundary elements for 3D Navier Stokes flows, The Mathematics of Finite Elements and Applications, Ed. J. R. Whiteman, 6, (1988), 305–312.

    Google Scholar 

  10. Hebeker, F. K., On Lagrangean and unsteady boundary element methods for in compressible Navier Stokes problems, The Navier Stokes Equations - Theory and Numerical Methods, Ed. R. Rautmann, (Oberwolfach, September 19–23, 1988), to appear.

    Google Scholar 

  11. Hebeker, F. K., Hsiao, G. C., On a boundary integral equation approach to a nonstationary problem of isothermal viscous compressible flows, Preprint 1134, Fb Mathematik, (May, 1988), Technische Hochschule Darmstadt.

    Google Scholar 

  12. Hsiao, G. C., Kress R., On an integral equation for the 2D exterior Stokes problem, Applied Numer. Math., 1(1985), 77–93.

    Article  MathSciNet  MATH  Google Scholar 

  13. Hsiao, G. C., Saranen, J., Integral equation solution of some heat conduction problems, interal Equations and Inverse Problems, Eds. V. Petkov and R. Lazarov (1991), 107–113.

    Google Scholar 

  14. Hsiao, G. C., Saranen, J., Coercivity of single layer heat operator, SI AM Math. Anal, Submitted.

    Google Scholar 

  15. Hsiao, G. C., Wendland, W. L., A finite element method for some integral equations of the first kind, J. Math. Anal. Appl, 58 (1977), 449–481.

    Article  MathSciNet  MATH  Google Scholar 

  16. Hsiao, G. C., Wendland, W. L., The Aubin-Nitsche lemma for integral equations, J. Integral Eqn., 3 (1981), 299–315.

    MathSciNet  MATH  Google Scholar 

  17. Ladyzhenskaja, O. A., The Mathematical Theory of Viscous Incompressible Flows, 1969, New York.

    Google Scholar 

  18. Ladyzhenskaja, O. A., Solonnikov, V. A., Uralzewa, N. N., Linear and Quasilinear Equations of Parabolic Type, 1968, Providence.

    Google Scholar 

  19. Leis, R., Initial Boundary Value Problems in Mathematical Physics, 1986, John Wily & Sons, and B. G. Teubner, Stuttgart, New York.

    MATH  Google Scholar 

  20. Lions, J. L., Magenes, E., Non-homogeneous Boundary Value Problems and Applications, Vol. 2, 1972, Berlin.

    Google Scholar 

  21. Nedelec, J. C., Planchard, J., Une methode variationelle d’elements finis pour la resolution numerique d’un probleihe exterior dans R, RARI0, R-8, 7 (1973), 105–129.

    MathSciNet  Google Scholar 

  22. Noon, P. J., The single layer heat potential and Galerkin boundary element methods for the heat equation, Ph.D. thesis, 1988, 108 pp. University of Maryland.

    Google Scholar 

  23. Piskorek, A., Zabrodski, E., Uber die instationaären hydrodynamischen Potentiale, ZAMM, 60 (1980), T267–269.

    MATH  Google Scholar 

  24. Solonnikov, V. A., Estimates of the solutions of a nonstationary linearized system of Navier Stokes equations, AMS Transl. Ser. 2, 75, (1968).

    Google Scholar 

  25. Solonnikov, V. A., Estimates for solutions of nonstationaxy Navier Stokes equations, J, Soc, Math, 8 (1977), 467–529.

    Article  MATH  Google Scholar 

  26. Temam, R., Navier Stokes Equations, 1977, Amsterdam.

    MATH  Google Scholar 

  27. Zhu, J., A boundary integral equation method for the stationary Stokes problem in 3D, Boundary Elements, Ed. C. A. Brebbia, 5 (1983), 283–292, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hebeker, F.K., Hsiao, G.C. (1993). On Volterra Boundary Integral Equations of the First Kind for Nonstationary Stokes Equations. In: Kane, J.H., Maier, G., Tosaka, N., Atluri, S.N. (eds) Advances in Boundary Element Techniques. Springer Series in Computational Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51027-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51027-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-51029-8

  • Online ISBN: 978-3-642-51027-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics