Skip to main content

Chemokinesis, Chemotaxis and Galvanotaxis Dose-Response Curves and Signal Chains

  • Chapter
Biological Motion

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 89))

Abstract

The translational kinematics of cells in a polar field as electric field, concentration gradient, etc., can be described by two independent cellular responses: the speed and the direction of migration. It is shown that the speed can be described by a steerer (=controller without feedback) and the direction of migration by an automatic controller (=controller with feedback). The steerer and automatic controller can be regarded as the framework for the directed movement or growth and it can be applied even when the physico-chemical signals of the cell are unknown. The models are verified by data of human granulocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alt W. (1980) Biased random walk models for Chemotaxis and related diffusion approximations, J. Math.Biol. 9, 147–177

    Article  MathSciNet  MATH  Google Scholar 

  • Atkins P.W. (1986) Physical Chemistry. Oxford University Press, Oxford, 260

    Google Scholar 

  • Brokaw C.J. (1958) Chemotaxis of bracken spermatozoids. Implications of electrochemical orientation. J.Exp.Biol. 35, 197–212

    Google Scholar 

  • deBoisfleury-Chevance A., Rapp B., Gruler H. (1989) Locomotion of white blood cells: A biophysical analysis. Blood Cells 15, 315–333

    Google Scholar 

  • Franke K. and Gruler H. (1990) Galvanotaxis of human granulocytes: electric field jump studies. Eur. Biophys.J. 18, 335–346

    Article  Google Scholar 

  • Gruler H. (1984) Cell Movement analysis in a necrotactic assay. Blood Cells 10, 107–121

    Google Scholar 

  • Gruler H., and Nuccitelli R. (1986) New insights into galvanotaxis and other directed cell movements: an analysis of the translocation distribution function. In: Ionic Currents in Development. Nuccitelli R., Ed., Alan R. Liss, New York, 337–347

    Google Scholar 

  • Gruler H. (1988) Cell movement and symmetry of the cellular environment. Z.Naturforsch. 43c, 754–764

    Google Scholar 

  • Gruler H. (1989) Biophysics of leukocytes: neutrophil Chemotaxis, characteristics and mechanisms. In: The Cellular Biochemistry and Physiology of Neutrophil (M.B. Hallett, Ed.) CRC-Press UNISCIENCE, 63–95.

    Google Scholar 

  • Gruler H. and Nuccitelli R., Neural crest cell galvanotaxis: new data and a novel approach to the analysis of both galvanotaxis and Chemotaxis. Will be published.

    Google Scholar 

  • Gruler H. and Gow N.A.R. (1990) Directed growth of fungal hyphae in an electric field. Z.Naturforsch. 45c, 86–93

    Google Scholar 

  • Keller E.F., and Segel L.A. (1972) Travelling bands of chemotactic bacteria: a theoretical analysis. J. theor. Biol. 30, 235–248

    Article  Google Scholar 

  • Patlak C.S. (1953) Random walk with persistence and external bias. Bull of Math. Biophys. 15, 311–338

    Article  MathSciNet  MATH  Google Scholar 

  • Rapp B., de Boisfleury-Chevance A., and Gruler H. (1988) Galvanotaxis of human granulocytes, dose-response curve. Eur.Biophys.J. 16, 313–319

    Article  Google Scholar 

  • Risken H. (1985) Fokker-Planck-Equation, Springer Verlag, Berlin, Heidelberg

    Google Scholar 

  • Tranquillo R.T. and Lauffenburger D.A. (1987) Stochastic model of leukocyte chemosensory movement. J.Math.Biol. 25, 229–262

    Article  MathSciNet  MATH  Google Scholar 

  • Tranquillo R.T., Lauffenburger D.A., and Zigmond S.H. (1988a) A stochastic model for leukocyte random mobility and Chemotaxis based on receptorbinding fluctuations. J.Cell Biol. 106, 303–309

    Article  Google Scholar 

  • Tranquillo R.T., Zigmönd S.H., and Lauffenburger D.A. (1988b) Measurement of the Chemotaxis coefficient for human neutrophils in the under-agarose migration assay. Cell Motility & Cytoskeleton 11, 1–15

    Article  Google Scholar 

  • Wiener N. (1961) Cybernetics: or Control and Communication in Animal and the Machine, M.I.T. Press, Cambridge

    Book  MATH  Google Scholar 

  • Wilkinson P.C. (1974) Chemotaxis and Inflammation, J.& A. Churchill London, chap. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gruler, H. (1990). Chemokinesis, Chemotaxis and Galvanotaxis Dose-Response Curves and Signal Chains. In: Alt, W., Hoffmann, G. (eds) Biological Motion. Lecture Notes in Biomathematics, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51664-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51664-1_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53520-1

  • Online ISBN: 978-3-642-51664-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics