Skip to main content

Novel Targets for Treatment of Pseudomonas aeruginosa Biofilms

  • Chapter
  • First Online:
Antibiofilm Agents

Part of the book series: Springer Series on Biofilms ((BIOFILMS,volume 8))

Abstract

Pseudomonas aeruginosa causes infection in all parts of the human body. The bacterium is naturally resistant to a wide range of antibiotics. In addition to resistance mechanisms such as efflux pumps, the ability to form aggregates, known as biofilm, further reduces Pseudomonas aeruginosa’s susceptibility to antibiotics. The presence of such biofilms is acknowledged to equal a persistent infection due to their inherent high tolerance to all antimicrobials and immune cells. In this chapter we discuss the mechanisms of biofilm tolerance. The latest biofilm research is reviewed and future treatment strategies such as quorum sensing inhibitors, silver, and antibodies are thoroughly evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaron SD et al (2002) Single and combination antibiotic susceptibilities of planktonic, adherent, and biofilm-grown Pseudomonas aeruginosa isolates cultured from sputa of adults with cystic fibrosis. J Clin Microbiol 40(11):4172–4179

    CAS  PubMed Central  PubMed  Google Scholar 

  • Adawi A et al (2012) In vitro and in vivo properties of a fully human IgG1 monoclonal antibody that combats multidrug resistant Pseudomonas aeruginosa. Int J Mol Med 30(3):455–464

    CAS  PubMed Central  PubMed  Google Scholar 

  • Afessa B, Green B (2000) Bacterial pneumonia in hospitalized patients with HIV infection: the pulmonary complications, ICU support, and prognostic factors of hospitalized patients with HIV (PIP) study. Chest 117(4):1017–1022

    CAS  PubMed  Google Scholar 

  • Alhede M et al (2009) Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes. Microbiology 155(Pt 11):3500–3508

    CAS  PubMed  Google Scholar 

  • Alhede M et al (2011) Phenotypes of non-attached Pseudomonas aeruginosa aggregates resemble surface attached biofilm. PLoS One 6(11):e27943

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alipour M et al (2009) Importance of DNase and alginate lyase for enhancing free and liposome encapsulated aminoglycoside activity against Pseudomonas aeruginosa. J Antimicrob Chemother 64(2):317–325

    CAS  PubMed  Google Scholar 

  • Allen L et al (2005) Pyocyanin production by Pseudomonas aeruginosa induces neutrophil apoptosis and impairs neutrophil-mediated host defenses in vivo. J Immunol 174(6):3643–3649

    CAS  PubMed  Google Scholar 

  • Allesen-Holm M et al (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59(4):1114–1128

    CAS  PubMed  Google Scholar 

  • Barbosa FC et al (2001) Subgingival occurrence and antimicrobial susceptibility of enteric rods and pseudomonads from Brazilian periodontitis patients. Oral Microbiol Immunol 16(5):306–310

    CAS  PubMed  Google Scholar 

  • Barnea Y et al (2006) Efficacy of antibodies against the N-terminal of Pseudomonas aeruginosa flagellin for treating infections in a murine burn wound model. Plast Reconstr Surg 117(7):2284–2291

    CAS  PubMed  Google Scholar 

  • Barnea Y et al (2009) Therapy with anti-flagellin A monoclonal antibody limits Pseudomonas aeruginosa invasiveness in a mouse burn wound sepsis model. Burns 35(3):390–396

    PubMed  Google Scholar 

  • Bjarnsholt T, Givskov M (2007) Quorum-sensing blockade as a strategy for enhancing host defences against bacterial pathogens. Philos Trans R Soc Lond B Biol Sci 362(1483):1213–1222

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bjarnsholt T, Givskov M (2008) Quorum sensing inhibitory drugs as next generation antimicrobials: worth the effort? Curr Infect Dis Rep 10(1):22–28

    PubMed  Google Scholar 

  • Bjarnsholt T et al (2005a) Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 151(Pt 2):373–383

    CAS  PubMed  Google Scholar 

  • Bjarnsholt T et al (2005b) Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology 151(Pt 12):3873–3880

    CAS  PubMed  Google Scholar 

  • Bjarnsholt T et al (2007) Silver against Pseudomonas aeruginosa biofilms. APMIS 115(8):921–928

    CAS  PubMed  Google Scholar 

  • Bjarnsholt T et al (2008) Why chronic wounds will not heal: a novel hypothesis. Wound Repair Regen 16(1):2–10

    PubMed  Google Scholar 

  • Bjarnsholt T et al (2009) Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol 44(6):547–558

    PubMed  Google Scholar 

  • Bone RC (1991) Monoclonal antibodies to endotoxin. New allies against sepsis? JAMA 266(8):1125–1126

    CAS  PubMed  Google Scholar 

  • Bone RC (1996) Why sepsis trials fail. JAMA 276(7):565–566

    CAS  PubMed  Google Scholar 

  • Bortolussi R et al (1987) Relationship of bacterial growth phase to killing of Listeria monocytogenes by oxidative agents generated by neutrophils and enzyme systems. Infect Immun 55(12):3197–3203

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boucher HW et al (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48(1):1–12

    PubMed  Google Scholar 

  • Bowler PG et al (2012) Multidrug-resistant organisms, wounds and topical antimicrobial protection. Int Wound J 9(4):387–396

    PubMed  Google Scholar 

  • Brouqui P et al (1995) Treatment of Pseudomonas aeruginosa-infected orthopedic prostheses with ceftazidime-ciprofloxacin antibiotic combination. Antimicrob Agents Chemother 39(11):2423–2425

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burmølle M et al (2010) Biofilms in chronic infections—a matter of opportunity—monospecies biofilms in multispecies infections. FEMS Immunol Med Microbiol 59(3):324–336

    PubMed  Google Scholar 

  • Castellano JJ et al (2007) Comparative evaluation of silver-containing antimicrobial dressings and drugs. Int Wound J 4(2):114–122

    PubMed  Google Scholar 

  • Chaw KC et al (2005) Role of silver ions in destabilization of intermolecular adhesion forces measured by atomic force microscopy in Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother 49(12):4853–4859

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chiang WC et al (2013) Extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 57(5):2352–2361

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chopra I (2007) The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J Antimicrob Chemother 59(4):587–590

    CAS  PubMed  Google Scholar 

  • Christensen LD et al (2012) Synergistic antibacterial efficacy of early combination treatment with tobramycin and quorum-sensing inhibitors against Pseudomonas aeruginosa in an intraperitoneal foreign-body infection mouse model. J Antimicrob Chemother 67(5):1198–1206

    CAS  PubMed  Google Scholar 

  • Ciofu O (2003) Pseudomonas aeruginosa chromosomal beta-lactamase in patients with cystic fibrosis and chronic lung infection. Mechanism of antibiotic resistance and target of the humoral immune response. APMIS Suppl(116): 1–47

    Google Scholar 

  • Clatworthy AE et al (2007) Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 3(9):541–548

    CAS  PubMed  Google Scholar 

  • Davies DG et al (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280(5361):295–298

    CAS  PubMed  Google Scholar 

  • Defoirdt T et al (2010) Can bacteria evolve resistance to quorum sensing disruption? PLoS Pathog 6(7):e1000989

    PubMed Central  PubMed  Google Scholar 

  • Doring G et al (1986) Elastase from polymorphonuclear leucocytes: a regulatory enzyme in immune complex disease. Clin Exp Immunol 64(3):597–605

    CAS  PubMed Central  PubMed  Google Scholar 

  • El-Solh AA et al (2004) Colonization of dental plaques: a reservoir of respiratory pathogens for hospital-acquired pneumonia in institutionalized elders. Chest 126(5):1575–1582

    PubMed  Google Scholar 

  • Emerson J et al (2002) Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr Pulmonol 34(2):91–100

    PubMed  Google Scholar 

  • Fazli M et al (2009) Nonrandom distribution of Pseudomonas aeruginosa and Staphylococcus aureus in chronic wounds. J Clin Microbiol 47(12):4084–4089

    PubMed Central  PubMed  Google Scholar 

  • FitzSimmons SC (1993) The changing epidemiology of cystic fibrosis. J Pediatr 122(1):1–9

    CAS  PubMed  Google Scholar 

  • Fleiszig SM, Evans DJ (2002) The pathogenesis of bacterial keratitis: studies with Pseudomonas aeruginosa. Clin Exp Optom 85(5):271–278

    PubMed  Google Scholar 

  • Frederiksen B et al (2006) Effect of aerosolized rhDNase (Pulmozyme) on pulmonary colonization in patients with cystic fibrosis. Acta Paediatr 95(9):1070–1074

    PubMed  Google Scholar 

  • Fuqua WC et al (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176(2):269–275

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haagensen JAJ et al (2007) Differentiation and distribution of colistin- and sodium dodecyl sulfate-tolerant cells in Pseudomonas aeruginosa biofilms. J Bacteriol 189(1):28–37

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hansen CR et al (2008) Early aggressive eradication therapy for intermittent Pseudomonas aeruginosa airway colonization in cystic fibrosis patients: 15 years experience. J Cyst Fibros 7(6):523–530

    CAS  PubMed  Google Scholar 

  • Hardalo C, Edberg SC (1997) Pseudomonas aeruginosa: assessment of risk from drinking water. Crit Rev Microbiol 23(1):47–75

    CAS  PubMed  Google Scholar 

  • Hawkey PM (2008) The growing burden of antimicrobial resistance. J Antimicrob Chemother 62(Suppl 1):i1–i9

    CAS  PubMed  Google Scholar 

  • Hentzer M et al (2003a) Quorum sensing : a novel target for the treatment of biofilm infections. BioDrugs 17(4):241–250

    CAS  PubMed  Google Scholar 

  • Hentzer M et al (2003b) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22(15):3803–3815

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoffmann N et al (2007) Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr(-/-) mice. Antimicrob Agents Chemother 51(10):3677–3687

    CAS  PubMed Central  PubMed  Google Scholar 

  • Høiby N et al (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35(4):322–332

    PubMed  Google Scholar 

  • Jakobsen TH, Bragason SK et al (2012a) Food as a source for quorum sensing inhibitors: iberin from horseradish revealed as a quorum sensing inhibitor of Pseudomonas aeruginosa. Appl Environ Microbiol 78(7):2410–2421

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jakobsen TH, van Gennip M et al (2012b) Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob Agents Chemother 56(5):2314–2325

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jensen PØ et al (2007) Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology 153(Pt 5):1329–1338

    CAS  PubMed  Google Scholar 

  • Jesaitis AJ et al (2003) Compromised host defense on Pseudomonas aeruginosa biofilms: characterization of neutrophil and biofilm interactions. J Immunol 171(8):4329–4339

    CAS  PubMed  Google Scholar 

  • Kaplan JB (2009) Therapeutic potential of biofilm-dispersing enzymes. Int J Artif Organs 32(9):545–554

    CAS  PubMed  Google Scholar 

  • Kharazmi A (1991) Mechanisms involved in the evasion of the host defence by Pseudomonas aeruginosa. Immunol Lett 30(2):201–205

    CAS  PubMed  Google Scholar 

  • Kharazmi A et al (1984a) Interaction of Pseudomonas aeruginosa alkaline protease and elastase with human polymorphonuclear leukocytes in vitro. Infect Immun 43(1):161–165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kharazmi A et al (1984b) Pseudomonas aeruginosa exoproteases inhibit human neutrophil chemiluminescence. Infect Immun 44(3):587–591

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kharazmi A et al (1986) Effect of Pseudomonas aeruginosa proteases on human leukocyte phagocytosis and bactericidal activity. Acta Pathol Microbiol Immunol Scand C 94(5):175–179

    CAS  PubMed  Google Scholar 

  • Kharazmi A et al (1989) Effect of Pseudomonas aeruginosa rhamnolipid on human neutrophil and monocyte function. APMIS 97(12):1068–1072

    CAS  Google Scholar 

  • Klueh U et al (2000) Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. J Biomed Mater Res 53(6):621–631

    CAS  PubMed  Google Scholar 

  • Kohler T et al (2010) Quorum sensing-dependent virulence during Pseudomonas aeruginosa colonisation and pneumonia in mechanically ventilated patients. Thorax 65(8):703–710

    PubMed  Google Scholar 

  • Kollberg H et al (2003) Oral administration of specific yolk antibodies (IgY) may prevent Pseudomonas aeruginosa infections in patients with cystic fibrosis: a phase I feasibility study. Pediatr Pulmonol 35(6):433–440

    PubMed  Google Scholar 

  • Kostenko V et al (2010) Impact of silver-containing wound dressings on bacterial biofilm viability and susceptibility to antibiotics during prolonged treatment. Antimicrob Agents Chemother 54(12):5120–5131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lansdown AB (2002) Silver. I: its antibacterial properties and mechanism of action. J Wound Care 11(4):125–130

    CAS  PubMed  Google Scholar 

  • Larsson A et al (1993) Chicken antibodies: taking advantage of evolution–a review. Poult Sci 72(10):1807–1812

    CAS  PubMed  Google Scholar 

  • Maira-Litran T et al (2004) Biologic properties and vaccine potential of the staphylococcal poly-N-acetyl glucosamine surface polysaccharide. Vaccine 22(7):872–879

    CAS  PubMed  Google Scholar 

  • Mizukane R et al (1994) Comparative in vitro exoenzyme-suppressing activities of azithromycin and other macrolide antibiotics against Pseudomonas aeruginosa. Antimicrob Agents Chemother 38(3):528–533

    CAS  PubMed Central  PubMed  Google Scholar 

  • Montanaro L et al (2011) Extracellular DNA in biofilms. Int J Artif Organs 34(9):824–831

    CAS  PubMed  Google Scholar 

  • Mulcahy H et al (2008) Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog 4(11):e1000213

    PubMed Central  PubMed  Google Scholar 

  • Nalca Y et al (2006) Quorum-sensing antagonistic activities of azithromycin in Pseudomonas aeruginosa PAO1: a global approach. Antimicrob Agents Chemother 50(5):1680–1688

    CAS  PubMed Central  PubMed  Google Scholar 

  • National Nosocomial Infections Surveillance System (2004) National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control 32(8):470–485

    Google Scholar 

  • Nilsson E et al (2007) Pseudomonas aeruginosa infections are prevented in cystic fibrosis patients by avian antibodies binding Pseudomonas aeruginosa flagellin. J Chromatogr B Analyt Technol Biomed Life Sci 856(1–2):75–80

    CAS  PubMed  Google Scholar 

  • Nilsson E et al (2008) Good effect of IgY against Pseudomonas aeruginosa infections in cystic fibrosis patients. Pediatr Pulmonol 43(9):892–899

    PubMed  Google Scholar 

  • Oncel S et al (2010) Evaluation of bacterial biofilms in chronic rhinosinusitis. J Otolaryngol Head Neck Surg 39(1):52–55

    PubMed  Google Scholar 

  • Pamp SJ et al (2008) Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol Microbiol 68(1):223–240

    CAS  PubMed  Google Scholar 

  • Parks QM et al (2009) Neutrophil enhancement of Pseudomonas aeruginosa biofilm development: human F-actin and DNA as targets for therapy. J Med Microbiol 58(Pt 4):492–502

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parsons D et al (2005) Silver antimicrobial dressings in wound management: a comparison of antibacterial, physical, and chemical characteristics. Wounds 17(8):222–232

    Google Scholar 

  • Pollack M et al (1984) Immunization with Pseudomonas aeruginosa high-molecular-weight polysaccharides prevents death from Pseudomonas burn infections in mice. Infect Immun 43(2):759–760

    CAS  PubMed Central  PubMed  Google Scholar 

  • Post JC (2001) Direct evidence of bacterial biofilms in otitis media. Laryngoscope 111(12):2083–2094

    CAS  PubMed  Google Scholar 

  • Rasmussen TB et al (2005) Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology 151(Pt 5):1325–1340

    CAS  PubMed  Google Scholar 

  • Reyes MP, Lerner AM (1983) Current problems in the treatment of infective endocarditis due to Pseudomonas aeruginosa. Rev Infect Dis 5(2):314–321

    CAS  PubMed  Google Scholar 

  • Robinson PJ (2002) Dornase alfa in early cystic fibrosis lung disease. Pediatr Pulmonol 34(3):237–241

    PubMed  Google Scholar 

  • Sapico FL (1996) Microbiology and antimicrobial therapy of spinal infections. Orthop Clin North Am 27(1):9–13

    CAS  PubMed  Google Scholar 

  • Schaedel C et al (2002) Predictors of deterioration of lung function in cystic fibrosis. Pediatr Pulmonol 33(6):483–491

    CAS  PubMed  Google Scholar 

  • Shanks KK et al (2010) Interleukin-8 production by human airway epithelial cells in response to Pseudomonas aeruginosa clinical isolates expressing type a or type b flagellins. Clin Vaccine Immunol 17(8):1196–1202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shapiro JA (1998) Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol 52(1):81–104

    CAS  PubMed  Google Scholar 

  • Skindersø ME et al (2008) Effects of antibiotics on quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 52(10):3648–3663

    Google Scholar 

  • Smith RS, Iglewski BH (2003) P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6(1):56–60

    CAS  PubMed  Google Scholar 

  • Smith KD et al (2003) Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat Immunol 4(12):1247–1253

    CAS  PubMed  Google Scholar 

  • Spellberg B et al (2008) The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 46(2):155–164

    PubMed  Google Scholar 

  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358(9276):135–138

    CAS  PubMed  Google Scholar 

  • Storm-Versloot MN et al (2010) Topical silver for preventing wound infection. Cochrane Database Syst Rev(3):CD006478

    Google Scholar 

  • Stover CK et al (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406(6799):959–964

    CAS  PubMed  Google Scholar 

  • Sun D et al (2005) Inhibition of biofilm formation by monoclonal antibodies against Staphylococcus epidermidis RP62A accumulation-associated protein. Clin Diagn Lab Immunol 12(1):93–100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tacconelli E et al (2009) Epidemiology, medical outcomes and costs of catheter-related bloodstream infections in intensive care units of four European countries: literature- and registry-based estimates. J Hosp Infect 72(2):97–103

    CAS  PubMed  Google Scholar 

  • Tang JX et al (2005) Anionic poly(amino acid)s dissolve F-actin and DNA bundles, enhance DNase activity, and reduce the viscosity of cystic fibrosis sputum. Am J Physiol Lung Cell Mol Physiol 289(4):L599–L605

    CAS  PubMed  Google Scholar 

  • Tashiro Y et al (2008) Opr86 is essential for viability and is a potential candidate for a protective antigen against biofilm formation by Pseudomonas aeruginosa. J Bacteriol 190(11):3969–3978

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tetz GV et al (2009) Effect of DNase and antibiotics on biofilm characteristics. Antimicrob Agents Chemother 53(3):1204–1209

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tolker-Nielsen T, Hoiby N (2009) Extracellular DNA and F-actin as targets in antibiofilm cystic fibrosis therapy. Future Microbiol 4(6):645–647

    CAS  PubMed  Google Scholar 

  • Toy LW, Macera L (2011) Evidence-based review of silver dressing use on chronic wounds. J Am Acad Nurse Pract 23(4):183–192

    PubMed  Google Scholar 

  • van Gennip M et al (2009) Inactivation of the rhlA gene in Pseudomonas aeruginosa prevents rhamnolipid production, disabling the protection against polymorphonuclear leukocytes. APMIS 117(7):537–546

    PubMed  Google Scholar 

  • Walker TS et al (2005) Enhanced Pseudomonas aeruginosa biofilm development mediated by human neutrophils. Infect Immun 73(6):3693–3701

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    CAS  PubMed  Google Scholar 

  • Whitchurch CB et al (2002) Extracellular DNA required for bacterial biofilm formation. Science 295(5559):1487

    CAS  PubMed  Google Scholar 

  • Withers H et al (2001) Quorum sensing as an integral component of gene regulatory networks in Gram-negative bacteria. Curr Opin Microbiol 4(2):186–193

    CAS  PubMed  Google Scholar 

  • Wu H et al (2004) Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J Antimicrob Chemother 53(6):1054–1061

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bjarnsholt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alhede, M., Alhede, M., Bjarnsholt, T. (2014). Novel Targets for Treatment of Pseudomonas aeruginosa Biofilms. In: Rumbaugh, K., Ahmad, I. (eds) Antibiofilm Agents. Springer Series on Biofilms, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53833-9_12

Download citation

Publish with us

Policies and ethics