Skip to main content

Transgenic Technology in Marine Organisms

  • Chapter
Springer Handbook of Marine Biotechnology

Abstract

Marine organisms into which a foreign gene or non-coding deoxyribonucleic acid (GlossaryTerm

DNA

) fragment is artificially introduced and stably integrated in their genomes are termed transgenic marine organisms. Since the first report in 1985, a wide range of transgenic fish and marine bivalve mollusks have been produced by microinjecting or electroporating homologous or heterologous transgenes into newly fertilized or unfertilized eggs and sperm. In the past few years, rapid advances of gene transfer technology has resulted in the production of many genetically modified organisms (GlossaryTerm

GMO

s) such as fish, crustaceans, microalgae, macroalgae, and sea urchins. These GlossaryTerm

GMO

s are valuable in assisting the advances of basic research as well as biotechnological application. In this chapter, the principle of producing transgenic marine organisms and the application of the technology to produce genetically modified marine organisms in the hope of improving the quality of human life as well as the earth environments will be critically reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AHRE:

aromatic hydrocarbon response element

AMP:

antimicrobial peptide

BSD:

blasticidin

BTX:

square wave generator

CAS:

CRISPR-associated

CAT:

chloramphenicol acetyltransferase

CEME:

cecropin-medilitin hybrid peptide

CF:

cystic fibrosis

CMV:

cytomegalovirus mosaic virus

CRISPR:

clustered regularly interspersed short palindromic repeat

DNA:

deoxyribonucleic acid

EPRE:

electrophile response element

FAO:

Food and Agriculture Organization

FDA:

Food and Drug Administration

GFP:

green fluorescent protein

GH:

growth hormone

GMO:

genetically modified organism

GM:

genetically modified

HBV:

hepatitis B virus

HCV:

hepatitis C virus

ICC:

intrahepatic cholangiocarcinoma

IHNV:

infectious hematopoietic necrosis virus

IPNV:

infectious pancreatic necrosis virus

LTR:

long terminal repeat

MCH:

melanin-concentrating hormone

MO:

morpholino phosphorodiamidate oligonucleotide

MRE:

metal response element

MT:

metallothionein

MoMLV:

Moloney murine leukemia virus

NFT:

neurofibrillary tangles

PBS:

phosphate buffered saline

PCR:

polymerase chain reaction

RACE-PCR:

rapid amplification of cDNA ends-PCR

RFP:

red fluorescent protein

RISC:

RNA-induced silencing complex

RNA:

ribonucleic acid

RPS:

relative percent survival

RT-PCR:

reverse transcription-polymerase chain reaction

RT:

reverse transcriptase

SHRV:

snakehead rhabdovirus

TALEN:

transcription activator-like effector nuclease

TALE:

transcription activator-like effector

TCDD:

2,3,7,8-tetrachlorodibenzo-p-dioxin

UV:

ultraviolet

VHSV:

viral hemorrhagic septicemia virus

VSV:

vesicular stomatitis virus

VTG:

estrogen inducible vitellogenin promoter

ZFN:

zinc finger protein

zinc-finger nuclease

ZFP:

zinc finger peptide

cDNA:

complementary DNA

mRNA:

messenger RNA

siRNA:

small (short) interfering RNA

References

  1. T.T. Chen, D.A. Powers: Transgenic fish, Trends Biotechnol. 8, 209–215 (1990)

    Article  CAS  Google Scholar 

  2. G.L. Fletcher, P.L. Davis: Transgenic fish for aquaculture. In: Genetic Engineering, Vol. 13, ed. by J.K. Setlow (Plenum, New York 1991) pp. 331–370

    Chapter  Google Scholar 

  3. P.B. Hackett: The molecular biology of transgenic fish. In: Biochemistry and Molecular Biology of Fish 2, ed. by P.W. Hochachka, T.P. Mommsen (Elsevier, B.V. 1993) pp. 207–240

    Google Scholar 

  4. P.P. Chiou, J. Khoo, C.Z. Chun, T.T. Chen: Transgenic fish. In: Genomics and Genetics, ed. by R. A. Meyer (Wiley-VCH, Weinheim 2007) pp. 831–861

    Google Scholar 

  5. J.K. Lu, T.T. Chen, S.K. Allen, T. Matsubara, J.C. Burns: Production of transgenic dwarf surfclams, Mulinia lateralis, with Pantropic retroviral vectors, Proc. Natl. Acad. Sci. USA 93, 3482–3486 (1996)

    Article  CAS  Google Scholar 

  6. S.-H. Chang, B.-C. Lee, Y.-D. Chen, Y.-C. Lee, H.-J. Tsai: Development of transgenic zooplankton Artemina as a bioreactor to produce exogenous protein, Transgenes. Res. 20, 1099–1111 (2011)

    Article  CAS  Google Scholar 

  7. H.L. Chen, S.S. Li, R. Huang, H.-J. Tsai: Conditional production of functional fish growth hormone in the transgenic line of Nannochoculata (Eustigmatophyceae), J. Phycol. 44, 768–776 (2008)

    Article  CAS  Google Scholar 

  8. S. Qin, P. Jiang, C. Tsang: Transforming kelp into a marine bioreactor, Trends Biotechnol. 23(5), 264–268 (2008)

    Article  CAS  Google Scholar 

  9. A.B. Core, A.E. Royna, E.A. Bradham: Pantropic retrovirasus as a transduction tool for sea urchin embryos, Proc. Natl. Aca. Sci. USA 109, 5334–5339 (2012)

    Article  CAS  Google Scholar 

  10. Z. Lu, B. Moav, A.J. Faras, K. Guise, A.R. Kapuscinski, P.B. Hackett: Functional analysis of elements affecting expression of the β-actin gene of carp, Mol. Cell. Biol. 10, 3432–3440 (1990)

    Article  Google Scholar 

  11. J.K. Lu, B.H. Fu, J.L. Wu, T.T. Chen: Production of transgenic silver sea bream (Sparus sarba) by different gene transfer methods, Mar. Biotechnol. 4, 328–337 (2002)

    Article  CAS  Google Scholar 

  12. M.C. Halloran, M. Sato-Maeda, J.T. Warren, F. Su, Z. Lele, H.P. Krone, J.Y. Kuwada, W. Shoji: Laser-induced gene expression in specific cells of transgenic zebrafish, Development 127, 1953–1960 (2000)

    CAS  Google Scholar 

  13. T.T. Chen, D.A. Powers, C.M. Lin, K. Kight, M. Hayat, N. Chatakondi, A.C. Ramboux, P.L. Duncan, R.A. Dunham: Expression and inheritance of RSVLTR- rtGH1 cDNA in common carp, Cyprinus carpio, Mol. Mar. Biol. Biotechnol. 2, 88–95 (1993)

    CAS  Google Scholar 

  14. T.T. Chen, C.M. Lin, Z. Zhu, L.I. Gonzalez-Villasenor, R.A. Dunham, D.A. Powers: Gene transfer, expression and inheritance of rainbow trout growth hormone gene in carp and loach. In: Transgenic Models in Medicine and Agriculture, ed. by R. Church (Wiley, New York 1990) pp. 127–139

    Google Scholar 

  15. S.J. Du , G.L. Gong, G.L. Fletcher, M.A. Shears, M.J. King, D.R. Idler, C.L. Hew: Growth enhancement in transgenic Atlantic salmon by the use of an all fish chimeric growth hormone gene construct, Bio. Technol. 10, 176–181 (1992)

    Article  CAS  Google Scholar 

  16. R.A. Dunham, A.C. Ramboux, P.L. Duncan, M. Hayat, T.T. Chen, C.M. Lin, K. Kight, L.I. Gonzalez-Villasenor, D.A. Powers: Transfer, expression and inheritance of salmonid growth hormone genes in channel catfish, Ictalarus punctatus, and effects on performance traits, Mol. Mar. Biol. Biotechnol. 1, 380–389 (1992)

    CAS  Google Scholar 

  17. G.M. Her, C.C. Chiang, J.L. Wu, J.L. : Zebrafish intestinal fatty acid binding protein (I-FABP) gene promoter drives gut-specific expression in stable transgenic fish, Genesis 38, 26–31 (2004)

    Article  CAS  Google Scholar 

  18. K. Ozato, H. Kondoh, H. Inohara, T. Iwanatsu, Y. Wakamatusu, T.S. Okada: Production of transgenic fish: introduction and expression of chicken δ-crystallin gene in medaka embryos, Cell Differ. 19, 237–244 (1986)

    Article  CAS  Google Scholar 

  19. M.A. Shears, G.L. Fletcher, C.L. Hew, S. Gauthier, P.L. Davies: Transfer, expression, and stable inheritance of antifreeze protein genes in Atlantic salmon (Salmo salar). Mol. Mar. Biol. Biotechnol. 1, 58–63 (1991)

    CAS  Google Scholar 

  20. A. Amsterdam, S. Lin, N. Hopkins: The Aequorea victoria green fluorescent protein can be used as a reporter in live zebrafish embryos, Dev. Biol. 171, 123–129 (1995)

    Article  CAS  Google Scholar 

  21. S. Higashijima, Y. Hotta, H. Okamoto: Visualization of cranial motor neurons in live transgenic zebrafish expressing green fluorescent protein under the control of the islet-1 promoter/enhancer, J. Neurosci. 20, 206–218 (2000)

    CAS  Google Scholar 

  22. J.R. Fetcho, S.I. Higashijaa, D. McLean: Zebrafish and motor control over the last decade, Brian Res. Rev. 57, 86–93 (2009)

    Article  Google Scholar 

  23. S. Higashijima, H. Okamoto, N. Ueno, Y. Hotta, G. Eguchi: High-frequency generation of transgenic zebrafish which reliably express GFP in whole muscles or the whole body by using promoters of zebrafish origin, Dev. Biol. 192, 289–299 (1997)

    Article  CAS  Google Scholar 

  24. R.A. Dunham, N. Chatakondi, A.J. Nichols, H. Kucuktas, T.T. Chen, D.A. Powers, J.D. Weete, R.A. Cummins, K.R.T. Lovell: Effect of rainbow trout growth hormone complementary DNA on body shape, carcass yield, and carcass composition of F${}_{{1}}$ and F${}_{{2}}$ transgenic common carp (Cyprinus carpio), Mar. Biotechnol. 4, 604–611 (2002)

    Article  CAS  Google Scholar 

  25. G.M. Her, Y.H. Yeh, J.L. Wu: 435-bp liver regulatory sequence in the liver fatty acid binding protein (L-FABP) gene is sufficient to modulate liver regional expression in transgenic zebrafish, Dev. Dyn. 227, 347–356 (2003)

    Article  CAS  Google Scholar 

  26. Z. Gong, H. Wan, T.L. Tay, H. Wang, M. Chen, T. Yan: Development of transgenic fish for ornamental and bioreactor by strong expression of fluorescent proteins in the skeletal muscle, Biochem. Biophys. Res. Commun. 308, 58–63 (2003)

    Article  CAS  Google Scholar 

  27. H. Wan, J. He, B. Ju, T. Yan, T.J. Lam, Z. Gong: Generation of two-color transgenic zebrafish using the green and red fluorescent protein reporter genes gfp and rfp, Mar. Biotechnol. 4, 146–154 (2002)

    Article  CAS  Google Scholar 

  28. R. Sorek, V. Kunin, P. Hugenholtz: CRISPR - a widespread system that provides acquired resistance against phages in bacteria and archaea, Nat. Rev./Microbiol. 6, 181–186 (2008)

    Article  CAS  Google Scholar 

  29. S. Qin, P. Jiang, C. Tseng: Transformation kelp into a marine bioreactor, Trends Biotechnol. 23, 265–268 (2010)

    Google Scholar 

  30. S.D. Buckingham, B. Esmaeili, M. Wood, D.B. Sattelle: RNA interference: from model organisms towards therapy for neural and neuromuscular disorder, Human Molec. Genet. 13(Review Issue 2), R275–R288 (2004)

    Article  CAS  Google Scholar 

  31. T.A. Vickers, S. Koo, C.F. Bennett, S.T. Crooke, N.M. Doan, B.F. Baker: Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents, J. Biol. Chem. 278, 7108–7118 (2003)

    Article  CAS  Google Scholar 

  32. S. Uzbekova, J. Chyb, F. Ferriere, T. Bailhacche, P. Prunet, P. Alestrom, B. Breton: Transgenic rainbow trout expressed sGnRH-antisense RNA under the control of sGnRH promoter of Atlantic salmon, J. Mol. Endocrinol. 25, 337–350 (2000)

    Article  CAS  Google Scholar 

  33. A.A. Amali, C.-J. Lin, Y.-H. Chen, W.-L. Wang, H.-Y. Gong, C.Y. Lee, Y.-L. Ko, J.-K. Lu, G.-M. Her, T.T. Chen, J.-L. Wu: Up-regulation of muscle-specific transcription factors during embryonic somitogenesis of zebrafish (Danio rerio) by knock-down of myostatin-1, Develop. Dyn. 229, 847–856 (2004)

    Article  CAS  Google Scholar 

  34. P. Joshi, J.O. Liang, K. DiMonte, J. Sullivan, S.W. Pimplikar: Amyloid precursor protein is required for convergent-expression movements during zebrafish development, Develop. Biol. 335, 1–11 (2009)

    Article  CAS  Google Scholar 

  35. S. Boonanuntanasarn, G. Yoshizaki, Y. Takeuchi, T. Morita, T. Takeuchi: Gene knock-down in rainbow trout embryos using antisense Morpholino phosphorodiamidate oligonucleotides, Mar. Biotechnol. 4, 256–266 (2002)

    Article  CAS  Google Scholar 

  36. P. Song, S.W. Pimpilkar: Knockdown of amyloid precursor protein in zebrafish causes defects in motor axon outgrowth, PLOS ONE 7, 1–13 (2012)

    Article  CAS  Google Scholar 

  37. J. Xu, J. Gao, J. Li, L. Xue, K. Clark, S.C. Ekker, S.J. Du : Functional analysis of slow myosin heavy chain 1 and myomesin-3 in sarcomere organization in zebrafish embryonic slow muscle, J. Genet. Genomics 39, 69–80 (2012)

    Article  CAS  Google Scholar 

  38. B.W. Draper, P.A. Morcos, C.B. Kimmel: Inhibition of zebrafish fgf8 Pre-mRNA splicing with morpholino oligos: A quantifiable method for gene knockdown, Genesis 30, 154–156 (2001)

    Article  CAS  Google Scholar 

  39. M. Cotten, P. Jennings: Ribozyme mediated destruction of RNA in vivo, EMBO J. 8, 3861–3866 (1989)

    CAS  Google Scholar 

  40. Y. Xie, X. Chen, T. Wagner: A ribozyme-mediated, gene knockdown strategy for the identification of gene function in zebrafish, Proc. Natl. Acad. Sci. USA 94, 13777–13781 (1997)

    Article  CAS  Google Scholar 

  41. S. Boonanuntanasarn, T. Takeuchi, G. Yoshizaki: High-efficient gene knockdown using chimeric ribozymes in fish embryos, Biochem. Biophys. Res. Commun. 336, 438–443 (2005)

    Article  CAS  Google Scholar 

  42. S. Boonanuntanasarn, G. Yoshizaki, T. Takeuchi: Specific gene silencing using small interfering RNAs in fish embryos, Biochem. Biophys. Res. Commun. 310, 1089–1095 (2003)

    Article  CAS  Google Scholar 

  43. M.S. Duxbury, E.E. Whang: RNA interference: a practical approach, J. Surg. Res. 117, 339–344 (2004)

    Article  CAS  Google Scholar 

  44. A. Kelly, A.F. Huristone: The use of RNAi technologies for gene knockdown in zebrafish, Brief. Funct. Genomics 10, 189–196 (2011)

    Article  CAS  Google Scholar 

  45. I.U.S. Leong, C.-C. Lan, J.R. Skinner, A.N. Shelling, D.R. Love: vivo testing of microRNA-mediated gene knockdown in zebrafish, J. Biomed. Biotechnol. 2012, 350352 (2012)

    Google Scholar 

  46. J.K. Lu, J.C. Burns, T.T. Chen: Retrovirus-mediated transfer and expression of transgenes in medaka, Proc. Third Int. Mar. Biotechnol. Conf. at Tromoso, Norway (1994), pp. 72

    Google Scholar 

  47. Z. Dong, J. Peng, S. Guo: Stable gene silicing zebrafish with spatiotemporally targetable RNA interference, Genetics 193, 1065–1071 (2013)

    Article  CAS  Google Scholar 

  48. J.C. Miller, M.C. Holmes, J. Wang, D.Y. Guschin, Y.L. Lee, I. Rupniewski, C.M. Beausejour, A.J. Waite, N.S. Wang, K.A. Kim, P.D. Gregory: An improved zinc-finger nuclease architecture for highly specific genome editing, Nat. Biotechnol. 25, 778–785 (2007)

    Article  CAS  Google Scholar 

  49. T. Cathomen, J.K. Joung: Zinc-finger nucleases: the next generation emerges, Molec. Ther. 16, 1200–1207 (2008)

    Article  CAS  Google Scholar 

  50. D. Carroll: Genome engineering with zinc-finger nucleases, Genetics 188, 773–782 (2011)

    Article  CAS  Google Scholar 

  51. D. Yang, H. Yang, W. Li, B. Zhao, Z. Ouyang, Z. Liu, Y. Zhao, N. Fan, J. Song, J. Tian, F. Li, J. Zhang, L. Chang, D. Pei, Y.E. Chen, L. Lai: Generation of PPAR mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning, Cell Res. 21, 979–982 (2011)

    Article  CAS  Google Scholar 

  52. J. Hauschild, B. Peterson, Y. Santago, A.-L. Queisser, J.W. Cost, H. Neimann: Efficient generation of biallelic knockout in pigs using zinc-finger nucleases, Proc. Natl. Acad. Sci. USA 108, 12013–12017 (2011)

    Article  CAS  Google Scholar 

  53. J.C. Miller, S. Tan, G.H. Qiao, K.A. Barlow, H. Wang, D.F. Xia, X. Meng, D.E. Paschon, E. Leung, S.J. Hinkley, G.P. Dulay, K.I. Hua, I. Ankoudinova, G.J. Cost, F.D. Urnov, H.S. Zhang, M.C. Holmes, L. Zhangh, P.D. Gregory, E.J. Rebar: A tale nuclease architecture for efficient genome editing, Nat. Biotechnol. 29, 143–148 (2011)

    Article  CAS  Google Scholar 

  54. J.C. Miller, M.C. Holmes, J. Wang, D.Y. Guschin, Y.-L. Lee, I. Rupniewski, C.M. Beausejour, A.J. Waite, N.S. Wang, K.A. Kim, P.D. Gregory, C.O. Pabo, E. Rebar: An improved zinc-finger nuclease architecture for highly specific genome editing, Nat. Biotechnol. 25, 778–785 (2007)

    Article  CAS  Google Scholar 

  55. Y. Doyon, J.M. McCammon, J.C. Miller, F. Faraji, C. Ngo, G.E. Katibah, R. Amora, T.D. Hocking, L. Zhang, E.J. Rebar, P.D. Gregory, E.D. Urnov, S.L. Amacher: Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases, Nat. Biotechnol. 26, 702–708 (2008)

    Article  CAS  Google Scholar 

  56. X. Meng, M.B. Noyes, L.J. Zhu, N.D. Lawson, S.A. Wolfe: Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases, Nat. Biotechnol. 26, 695–701 (2008)

    Article  CAS  Google Scholar 

  57. Z. Dong, J. Ge, K. Li, Z. Xu, D. Liang, J. Li, J. Li, W. Jia, Y. Li, X. Dong, S. Cao, X. Wang, J.Q. Pam Zhao: Heritable target inactivation of myostatingene in yellow catfish (Peiteobagrus filvidraco) using engineered zinc finger nucleases, PLoS ONE 6, 1–7 (2011)

    Google Scholar 

  58. D. F. Carlson, S. C. Fahrekrug, P. Hackett: Targeting DNA with fingers and TALENs, Mol. Ther. Nucleic Acids 1, e3 (2012)

    Google Scholar 

  59. K.J. Clark, D.F. Voytas, S.C. Ekker: A TALE of two nucleases: gene targeting for the masses?, Zebrafish 8, 147–149 (2011)

    Article  CAS  Google Scholar 

  60. J.D. Sander, L. Cade, C. Khayter, D. Reyon, R.T. Peterson, J.K. Joung, J.-R.J. Yeh: Targeted gene disruption in somatic zebrafish cells using engineered TALENs, Nat. Biotechnol. 29(8), 697–698 (2012)

    Article  CAS  Google Scholar 

  61. T. Cermak, E. L. Doyle, M. Christien, L. Wang, Y. Zhang, C. Schmidt, J. A. Baller, N. V. Somia, A. J. Bogdanove, D. F. Voytas: Efficient design and assembly of custom TAKLEN and other TAL effector-based constructs for DNA targeting, Nucleic Acid Res. 39, e82 (2011)

    Google Scholar 

  62. R. Barrangou: RNA-mediated programmable DNA cleavage, Nat. Biotechnol. 9, 836–838 (2012)

    Article  CAS  Google Scholar 

  63. C.R. Hale, S. Majumdar, J. Elmore, N. Compton, S. Olson, A.M. Resch, C.V.G. Glver, B.R. Gaveley, R.M. Tems, M.P. Tems: Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs, Molec. Cell 45, 292–302 (2012)

    Article  CAS  Google Scholar 

  64. W.Y. Hwang, Y. Fu, D. Reyon, M.L. Maeder, S.Q. Tsai, J.D. Sander, R.T. Peterson, J.-R.J. Yeh, K. Joung: Efficient genome editing in zebrafish using a CRISPR-Cas system, Nat. Biotechnol. 31, 227–229 (2013)

    Article  CAS  Google Scholar 

  65. N.A. Bluin, J.A. Brodie, A.C. Grossman, P. Xu, S.H. Brawlay: Porphyra: a marine crop shaped by stress, Trends Plant Sci. 16, 29–37 (2010)

    Article  CAS  Google Scholar 

  66. R.D. Palmiter, R.L. Brinster: Germ-line transformation in mice, Annu. Rev. Geneti. 20, 465–499 (1986)

    Article  CAS  Google Scholar 

  67. E. Neumann, M. Schaefer-Ridder, Y. Wang, P.H. Hofschneider: Gene transfer into mouse lyoma cells by electroporation in high electric fields, EMBO J. 1, 841–845 (1982)

    CAS  Google Scholar 

  68. H. Potter, L. Weir, P. Leder: Enhancer-dependent expression of human k immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation, Proc. Natl. Acad. Sci. USA 81, 7161–7165 (1984)

    Article  CAS  Google Scholar 

  69. K. Shigekawa, W.J. Dower: Electroporation of eukaryotes and prokaryotes: a general approach to introduction of macromolecules into cells, Biotechniques 6, 742–751 (1988)

    CAS  Google Scholar 

  70. D.A. Powers, L. Hereford, T. Cole, K. Creech, T.T. Chen, C.M. Lin, K. Kight, R.A. Dunham: Electroporation: A method for transferring genes into gametes of zebrafish (Brachydanio rerio), channel catfish (Ictalurus punctatus), and common carp (Cyrinus carpio), Mol. Mar. Biol. Biotechnol. 1, 301–308 (1992)

    CAS  Google Scholar 

  71. F.Y. Sin, S.P. Walker, J.E. Symonds, U.K. Mukherjee, J.G. Khoo, I.L. Sin: Electroporation of salmon sperm for gene transfer: Efficiency, reliability, and fate of transgene, Mol. Reprod. Dev. 56(2 Suppl), 285–288 (2000)

    Article  CAS  Google Scholar 

  72. J.E. Symonds, S.P. Walker, F.Y. Sin: Development of mass gene transfer method in chinook salmon: Optimization of gene transfer by electroporated sperm, Mol. Mar. Biol. Biotechnol. 3, 104–111 (1994)

    CAS  Google Scholar 

  73. T.T. Chen, M.J. Chen, T.T. Chiou, J.K. Lu: Transfer of foreign DNA into aquatic animals by electroporation. In: Electroporation and Sonoporation in Developmental Biology, ed. by H. Nakamura (Springer, Tokyo 2009) pp. 229–237

    Chapter  Google Scholar 

  74. A. Hallmann: Algal transgenics and biotechnology, Transgenic Plant J. 1, 81–98 (2007)

    Google Scholar 

  75. C.-M. Lin, C. Yarish, T.T. Chen: Development of novel gene transfer method in Phorphyra, Bull. Fish. Res. Agency Suppl. 1, 155 (2004)

    Google Scholar 

  76. C.D. Hsiao, F.J. Hsieh, H.J. Tsai: Enhanced expression and stable transmission of transgenes flanked by inverted terminal repeats from adeno-associated virus in zebrafish, Dev. Dyn. 220, 323–336 (2001)

    Article  CAS  Google Scholar 

  77. V. Thermes, C. Grabher, F. Ristoratore, F. Bourrat, A. Choulika, J. Wittbrodt, J.-S. Joly: I-SceI meganuclease mediates highly efficient transgenesis in fish, Mech. Dev. 118, 91–98 (2002)

    Article  CAS  Google Scholar 

  78. J.C. Burns, T. Friedmann, W. Driever, M. Burrascano, J.K. Yee: VSV-G pseudotyped retroviral vector: Concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells, Proc. Natl. Acad. Sci. USA 90, 8033–8037 (1993)

    Article  CAS  Google Scholar 

  79. S. Lin, N. Gaiano, P. Culp, J.C. Burns, T. Friedmann, J.K. Yee, N. Hopkins: Integration and germ-line transmission of a pseudotyped retroviral vector in zebrafish, Science 265, 666–668 (1994)

    Article  CAS  Google Scholar 

  80. A. Sarmasik, I.-K. Jang, C.Z. Chun, J.K. Lu, T.T. Chen: Production of transgenic live-bearing fish and crustaceans with replication-defective pantropic retroviral vectors, Mar. Biotechnol. 3(s177), s184 (2001)

    Google Scholar 

  81. A. Sarmasik, I.K. Jang, C.Z. Chun, J.K. Lu, T.T. Chen: Transgenic live-bearing fish and crustaceans produced by transforming immature gonads with replication-defective pantropic retroviral vectors, Mar. Biotechnol. 3, 470–477 (2001)

    Article  CAS  Google Scholar 

  82. J.E. Parsons, G.H. Thorgaard: Production of androgenetic diploid rainbow trout, J. Heredity 76, 117–181 (1985)

    Google Scholar 

  83. P.L. Felgner, T.R. Gader, M. Holm, R. Roman, H.W. Chan, M. Wenz, J.P. Northrop, G.M. Ringold, M. Danelsen: Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure, Proc. Natl. Acad. Sci. USA 84, 74134–77417 (1987)

    Article  Google Scholar 

  84. R.B. Puchalski, W.E. Fahl: Gene transfer by electroporation, lipofection, and DEAE-dextran transfection: compatibility with cell sorting by flow cytometry, Cytometry 13, 23–30 (1992)

    Article  CAS  Google Scholar 

  85. R.W. Malone, P.L. Felgner, I.M. Verma: Cationic liposome-mediated RNA transfection, Proc. Natl. Acad. Sci. USA 86, 6077–6081 (1989)

    Article  CAS  Google Scholar 

  86. M.-Y. Chiang, H. Chan, M.A. Zounes, S.M. Freier, W.F. Lima, C.F. Benett: Antisense oligonucleotides inhibit intercellular adhesion molecule 1 expression by two distinct mechanisms, J. Biol. Chem. 266, 18162–18171 (1991)

    CAS  Google Scholar 

  87. C. Walker, M. Selby, A. Erickson, D. Cataldo, J.-P. Valensi, G.V. Nest: Cationic lipids direct a viral glycoprotein into the class I major histocompatibility complex antigen-presentation pathway, Proc. Natl. Acad. Sci. USA 89, 7915–7918 (1992)

    Article  CAS  Google Scholar 

  88. E. Harel-Markowitz, M. Gurevich, L.S. Shore, A. Katz, Y. Stram, M. Shemesh: Use of sperm plasmid DNA lipofection combined with REMI (Restriction enzyme-mediated insertion) for production of transgenic chickens expressing eGFP (enhanced green fluorescence protein) or human follicle-stimulating hormone, Biol. Reprod. 80, 1046–1052 (2009)

    Article  CAS  Google Scholar 

  89. P. Zhang, M. Hayat, C. Joyce, L.I. Gonzales-Villasenor, C.M. Lin, R.A. Dunham, T.T. Chen, D.A. Powers: Gene transfer, expression and inheritance of pRSV- Rainbow Trout-GH-cDNA in the carp, Cyprinus carpio (Linnaeus), Mol. Reprod. Dev. 25, 3–13 (1990)

    Article  CAS  Google Scholar 

  90. A. Sarmasik, G. Warr, T.T. Chen: Production of transgenic medaka with increased resistance to bacterial pathogens, Mar. Biotechnol. 4, 310–322 (2002)

    Article  CAS  Google Scholar 

  91. J.K. Lu, C.L. Chrisman, O.M. Andrisani, J.E. Dixon, T.T. Chen: Integration expression and germ-line transmission of foreign growth hormone genes in medaka, Oryzias latipes, Mol. Mar. Biol. Biotechnol. 1, 366–375 (1992)

    CAS  Google Scholar 

  92. G.W. Stuart, J.V. McMurry, M. Westerfield: Replication, integration, and stable germ-line transmission of foreign sequence injected into early zebrafish embryos, Development 109, 403–412 (1988)

    Google Scholar 

  93. G.W. Stuart, J.V. Vielkind, J.V. McMurray, M. Westerfield: Stable lines of transgenic zebrafish exhibit reproduction patterns of transgene expression, Development 109, 293–296 (1990)

    Google Scholar 

  94. A. Ballagi-Pordany, A. Ballagi-Pordany, K. Funa: Quantative determination of mRNA phenotypes by polymerase chain reaction, Anal. Biochem. 196, 88–94 (1991)

    Article  Google Scholar 

  95. S. Fronhoffs, G. Totzke, S. Stier, N. Wernert, M. Rothe, T. Bruning, B. Koch, A. Sachinidis, H. Vetter, Y. Ko: A method for the rapid construction of cRNA standard curves in quantitative real-time reverse transcription polymerase chain reaction, Mol. Cell. Probes. 16, 99–110 (2002)

    Article  CAS  Google Scholar 

  96. J.P. Brunelli, K.J. Wertzler, K. Sundin, G.H. Thorgaard: Y-specific sequences and polymorphisms in rainbow trout and Chinook salmon, Genome 51, 739–748 (2008)

    Article  CAS  Google Scholar 

  97. X. Jia, A. Patrzykat, R.H. Devlin, P.A. Ackerman, G.K. Iwama, R.E. Hancock: Antimicrobial peptides protect coho salmon from Vibrio anguillarum infections, Appl. Environ. Microbiol. 66, 1928–1932 (2000)

    Article  CAS  Google Scholar 

  98. R.E.W. Hancock, R. Lehrer: Cationic peptides: A new source of antibiotics, Trends Biotechnol. 16, 82–88 (1998)

    Article  CAS  Google Scholar 

  99. L. Marri, R. Dallai, D. Marchini: The novel antibacterial peptide ceratotoxin A alters permeability of the inner and outer membrane of Escherichia coli K-12, Curr. Microbiol. 33, 40–43 (1996)

    Article  CAS  Google Scholar 

  100. A. Izadpanah, R.L. Gallo: antimicrobial peptides, J. Am. Acad. Dermatol. 205, 381–390 (2005)

    Article  Google Scholar 

  101. H.G. Boman: Peptide antibiotics and their role in innate immunity, Annu. Rev. Immunol. 13, 61–92 (1995)

    Article  CAS  Google Scholar 

  102. P.P. Chiou, C.M. Lin, L. Perez, T.T. Chen: Effect of cecropin B and a synthetic analogue on propagation of fish viruses in vitro, Mar. Biotechnol. 4, 294–302 (2002)

    Article  CAS  Google Scholar 

  103. P.P. Chiou, M.J. Chen, C.-M. Lin, J. Khoo, J. Larson, R. Holt, J.A. Leong, G. Thorgaard, T.T. Chen: Production of homozygous transgenic rainbow trout with enhanced disease resistance, Mar. Biotechnol. 16, 299–308 (2014)

    Article  CAS  Google Scholar 

  104. L.B. Agellon, C.J. Emery, J.M. Jones, S.L. Davies, A.D. Dingle, T.T. Chen: Growth enhancement by genetically engineered rainbow trout growth hormone, Can. J. Fish. Aqua. Sci. 45, 146–151 (1988)

    Article  CAS  Google Scholar 

  105. K. Paynter, T.T. Chen: Biological activity of biosynthetic rainbow trout growth hormone in the eastern oyster, (Crassostrea virginica), Biol. Bull. 181, 459–462 (1991)

    Article  CAS  Google Scholar 

  106. J.A. Gill, J.P. Stumper, E.M. Donaldson, H.M. Dye: Recombinant chicken and bovine growth hormone in cultured juvenile Pacific salmon, Biotechnology 3, 4306–4310 (1985)

    Google Scholar 

  107. S. Moriyama, A. Takahashi, T. Hirano, H. Kawauchi: Salmon growth hormone is transported into the circulation of rainbow trout (Oncorhynchus mykiss) after intestinal administration, J. Comp. Physiol. B 160, 251–260 (1990)

    Article  CAS  Google Scholar 

  108. S. Sekine, T. Mizukami, T. Nishi, Y. Kuwana, A. Saito, M. Sato, H. Itoh, H. Kawauchi: Cloning and expression of cDNA for salmon growth hormone in E. coli, Proc. Natl. Acad. Sci. USA 82, 4306–4310 (1985)

    Article  CAS  Google Scholar 

  109. Z. Zhu, G. Li, L. He, S.Z. Chen: Novel gene transfer into the goldfish (Carassius auratus L 1758), Angew. Ichthyol. 1, 31–34 (1985)

    Article  CAS  Google Scholar 

  110. R. Martinez, M.P. Estrada, J. Berlanga, I. Guillen, O. Hernandez, E. Cabrera, R. Pimentel, R. Morales, F. Herrera, A. Morales, J.C. Pina, Z. Abad, V. Sanchez, P. Melamed, R. Lleonart, J. de la Fuente: Growth enhancement in transgenic tilapia by ectopic expression of tilapia growth hormone, Mol. Mar. Biol. Biotechnol. 5, 62–70 (1996)

    CAS  Google Scholar 

  111. T.T. Chen, J.K. Lu, R.I.I. Fash: Transgenic fish technology and its application in fish production. In: Agricultural Biotechnology, ed. by A. Altman (Marcel Dekker, Inc., New York/Basel/Hong Kong 1998) pp. 527–547

    Google Scholar 

  112. M. Kinoshita, T. Morita, H. Toyohara, T. Hirata, M. Sakaguchi, M. Ono, K. Inoue, Y. Wakamatsu, K. Ozato: Transgenic medaka overexpressing a melanin-concentrating hormone exhibit lightened body color but no remarkable abnormality, Mar. Biotechnol. 3, 536–543 (2001)

    Article  CAS  Google Scholar 

  113. Z. Gong, B. Ju, X. Wang, J. He, H. Wan, P.M. Sudha, T. Yan: Green fluorescent protein expression in germ-line transmitted transgenic zebrafish under a stratified epithelial promoter from keratin8, Dev. Dyn. 223, 204–215 (2002)

    Article  CAS  Google Scholar 

  114. Z. Gong, H. Wan, T.L. Tay, H. Wang, M. Chen, T. Yan: Development of transgenic fish for ornamental and bioreactor by strong expression of fluorescent protein in the skeletal muscle, Biochem. Biophys. Res. Commun. 308, 58–63 (2003)

    Article  CAS  Google Scholar 

  115. C. Holden: “That special glow” (a news report in Random Samples), Science 300, 1368 (2003)

    Google Scholar 

  116. Y. Wakamatsu, S. Pristyazhnyuk, M. Kinoshita, M. Tanaka, K. Ozato: The see-through medaka: a fish model that is transparent throughout life, Proc. Natl. Acad. Sci. USA 98, 10046–10050 (2001)

    Article  CAS  Google Scholar 

  117. C.A. Shively, T.B. Clarkson: The unique value of primate models in translational research, Am. J. Primatol. 71, 715–721 (2009)

    Article  Google Scholar 

  118. S.M. Williams, J.L. Haines, J.H. Moore: The use of animal models in the study of complex disease: All else is never equal or why do so many human stuidies fail to replicate animal findings?, BioEssays 26, 170–179 (2004)

    Article  CAS  Google Scholar 

  119. H.B. van der Worp, D.W. Howells, E.S. Sena, N.J. Porritt, S. Rewell, V. O'Collins, M.R. Macleod: Can animal models of seaseae realiable inform human studies?, PLoS Medicien 7, e1000245 (2010)

    Article  Google Scholar 

  120. S. Liu, S.D. Leach: Zebrafish models for cancer, Annu. Rev. Pathol. Mech. Dis. 6, 71–93 (2011)

    Article  CAS  Google Scholar 

  121. G. Kari, U. Rodeck, A.P. Dicker: Zebrafish: An emerging model system for human disease and drug discovery, Discovery 82, 70–80 (2007)

    CAS  Google Scholar 

  122. J. Bakkers: Zebrafish as a model to study cardiac development and human cardiac disease, Cardaic. Res. 91, 279–288 (2011)

    Article  CAS  Google Scholar 

  123. Y. Xi, S. Noble, M. Ekker: Modeling neurodegenerarion in zebrafish, Cur. Neurol. Neurosci. Rep. 11, 274–282 (2011)

    Article  CAS  Google Scholar 

  124. J.J. Sager, Q. Bai, E.A. Burton: Transgenic zebrafish models of neurodegenerative diseases, Brain Struct. Funct. 214, 285–302 (2010)

    Article  Google Scholar 

  125. L. Jing, L.I. Zon: Zebrafish as model for normal and malignant hematopoiesis, Dis. Models Mech. 4, 433–438 (2011)

    Article  CAS  Google Scholar 

  126. H.G. Tomasiewicz, D.B. Flaherty, J.P. Soria, J.G. Wood: Transgenic zebrafish model of neurodegeneration, J. Neurosci. Res. 70, 734–745 (2002)

    Article  CAS  Google Scholar 

  127. D.M. Langenau, D. Traver, A.A. Ferrando, J.L. Kutok, J.C. Aster, J.P. Kanki, S. Lin, E. Prochownik, N.S. Trede, L.I. Zon, A.T. Look: Myc-induced T cell leukemia in transgenic zebrafish, Science 299, 890 (2003)

    Article  CAS  Google Scholar 

  128. S. Berghmans, R.D. Murphey, E. Wienholds, D. Neuberg, J.L. Kutok, C.D.M. Fletcher, J.P. Morris, T.X. Liu, S. Schulte-Merker, J.P. Kanki, R. Plasterk, L.I. Zon, T. Look: tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors, Proc. Natl. Acad. Sci. USA 102, 407–412 (2005)

    Article  CAS  Google Scholar 

  129. N.Y. Store, L.I. Zon: Zebrafish models of p53 functions, Cold Spring Harb. Perspect. Biol. 2, a001123 (2010)

    Google Scholar 

  130. W. Liu, J.-R. Chen, C.-H. Hsu, Y.-H. Li, Y.-M. Chen, C.-Y. Lin, S.-J. Huang, Z.-K. Chang, Y.-C. Chen, C.-H. Lin, H.-Y. Gong, C.-C. Lin, K. Kawakami, J.-L. Wu: A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver, Hepatology 56, 2268–2276 (2012)

    Article  CAS  Google Scholar 

  131. M.J.I.I.I. Carvan, T.P. Dalton, G. Stuart, D.W. Nebert: Transgenic zebrafish as sentinels for aquatic pollution, Ann. N.Y. Acad. Sci. 919, 133–147 (2000)

    Article  CAS  Google Scholar 

  132. R.H. Schreurs, J. Legler, E. Artola-Garicano, T.L. Sinnige, P.H. Lanser, W. Seinen, B. van der Burg: In vitro and in vivo antiestrogenic effects of polycyclic musks in zebrafish, Environ. Sci. Technol. 38, 997–1002 (2004)

    Article  CAS  Google Scholar 

  133. H. Chen, J. Hu, J. Yang, Y. Wang, H. Xu, Q. Jiang, Y. Gong: Generation of a fluorescent transgenic zebrafish for detection of envbironmental estrogen, Aquat. Toxicol. 96, 53–61 (2010)

    Article  CAS  Google Scholar 

  134. F. Brion, Y.L. Page, B. Piccini, O. Cardoso, S.-K. Tong, B.-C. Chung, O. Kah: Screening estrogenic activities of chemicals or mistures in vivo using transgenic (cyp19ab1-GFP) zebrafish embryos, PLoS ONE 7, 1–10 (2012)

    Article  CAS  Google Scholar 

  135. P. Damdimopoulou, E. Treuter: Reporter zebrafish: Endocrine disruption meets estrogen signaling, Endocrinolology 152, 2542–2545 (2011)

    Article  CAS  Google Scholar 

  136. O. Lee, C.R. Tyler, T. Kudoh: Development of a trswnsient expression assay for detecting environmental oestrogens in zebrafish and meedaka embryos, BMC Biotechnol. 12, 32 (2012)

    Article  CAS  Google Scholar 

  137. Y.S. Cho, D.S. Kim, Y.K. Nam: Characterization of estrogen-responsive transgenic marine medaka Oryzia dancena gerlines harboring red fluorescent protein gene under the control by endogenous choriogenin H promoter, Transgenic Res. 22, 501–507 (2013)

    Article  CAS  Google Scholar 

  138. X. Terrien, J.-B. Fini, B.A. Demeneix, K.-W. Schramm, P. Prunet: Generation of fluorescent zebrafish to study endocrine disruption and potential crosstalk between thyroid hormone and corticosteroids, Aquat. Toxicol. 105, 13–20 (2011)

    Article  CAS  Google Scholar 

  139. G. Hwang, F. Muller, M.A. Rahman, D.W. Williams, P.J. Murdock, K.J. Pasi, G. Goldspink, H. Farahmand, N. MaClean: Fish as bioreactor: transgene expression of human coagulation factor VII in fish embryos, Mar. Biotechnol. 6, 485–492 (2004)

    Article  CAS  Google Scholar 

  140. S.-Y. Hu, C.-H. Laio, Yi-Pei Lin, Y.-H. Li, H.-Y. Gong, G.-H. Lin, K. Kawakami, T.H. Yang, J.-L. Wu: Zebrafish eggs used as bioreactors for the production of bioactive tilapia insulin-like growth factors, Transgenic Res. 20, 73–83 (2011)

    Article  CAS  Google Scholar 

  141. R. Radakovits, R.E. Jinkerson, A. Darizins, M.C. Posewitz: Genetic engineering if algae for enhanced biofuel production, Eukaryot. Cell 9, 486–501 (2010)

    Article  CAS  Google Scholar 

  142. A. Hallmann: Algal; transgenics and biotechnology, Transgenic Plant J. 1, 81–98 (2007)

    Google Scholar 

  143. J. Chen, P. Xu: FAO report, in FAO Fisheries and Aquaculture Department, http:/www.FAO.org (2005)

  144. Y. Fujita: Diseases of cultivated porphyra in Japan. In: Introduction to Applied Phycology, Vol. 1, ed. by I. Akatsuka (SPB Academic, The Hague 1990) pp. 177–190

    Google Scholar 

  145. S. Fukuda, K. Mikami, T. Uji, E.-J. Park, T. Ohba, K. Asasa, Y. Kitade, H. Endo, I. Kato, N. Saga: Factors influencing efficiency of transient gene expression in the red macrophyte Porphyra yezoensis, Plant Sci. 174, 329–339 (2008)

    Article  CAS  Google Scholar 

  146. J.E. Kubler, S.C. Minocha, A.C. Mathieson: Transient expression of the GUS reporter gene in protoplasts of Porphyra miniata (Rhodophyta), J. Mar. Biotechnol. 1, 165–169 (1994)

    CAS  Google Scholar 

  147. M. Kuang, S.-J. Wang, Y. Li, D.L. Shen, C.K. Zeng: Transient expression of exogenous GUS gene in Porphyra yezoensis (Rhdophyta), Chin. J. Oceanol. Limnol. 16(Suppl.), 56–61 (1998)

    Google Scholar 

  148. R. Hirata, M. Takahash, N. Saga, K. Mikami: Transient gene expression system established in Porphyra yezoensis is widely applicable in Bangiophycean algae, Mar. Biotechnol. 13, 1038–1047 (2011)

    Article  CAS  Google Scholar 

  149. J. Wang, P. Jiang, Y. Cui, X. Guan, S. Qin: Gene transfer into conchospores of Prophyra haitanensis (Bangiales, Rhodophyta), Phycologia 49, 355–360 (2010)

    Article  CAS  Google Scholar 

  150. R.D. Howard, J.A. DeWoody, W.M. Muir: Transgenic male mating advantage provides opportunity for Trojan gene effect in a fish, Proc. Natl. Acad. Sci. USA 101, 2934–2938 (2004)

    Article  CAS  Google Scholar 

  151. R. Kambadur, M. Sharma, T.P. Smith, J.J. Bass: Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle, Genome Res. 7, 910–916 (1997)

    CAS  Google Scholar 

  152. A.C. McPherron, S.J. Lee: Double muscling in cattle due to mutations in the myostatin gene, Proc. Natl. Acad. Sci. USA 94, 12457–12461 (1997)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas T. Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, T.T. et al. (2015). Transgenic Technology in Marine Organisms. In: Kim, SK. (eds) Springer Handbook of Marine Biotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53971-8_13

Download citation

Publish with us

Policies and ethics