Skip to main content

Self-Assembly and Nano-layering of Apatitic Calcium Phosphates in Biomaterials

  • Chapter
  • First Online:
Advances in Calcium Phosphate Biomaterials

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 2))

  • 2457 Accesses

Abstract

Among many calcium phosphates, apatitic ones are by far familiar because of their lattice structure similar to bone apatites. Yet, if one wants an apatite layer as a tool for improving tissue compatibility, regardless of hard or soft tissues, stoichiometric apatite is not necessary but nonstoichiometric apatite, e.g., with calcium ion deficiency or partial carbonate ion substitution, is preferable. Such apatite is easily provided on the surface of several materials when they are in contact with plasma; the materials include silicate glass and glass-ceramics and organic–inorganic hybrids with Si–O or Ti–O bonds as their skeleton, as well as some oxide gels derived via the sol-gel procedure. Moreover, proper water-soluble glass with specific compositions will be converted to apatite agglomerates or to rod- or needlelike apatite crystallites in array on their surface. The present chapter reviews deposition of apatitic calcium phosphates on such materials under body environment and their deposition mechanism in relation to constructing bone tissue as a hybrid between collagen fibrils and apatite crystallites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pourbaix M (1966) Atlas of electrochemical Equilibria in aqueous solutions. Pergamon Press, Oxford, p 504

    Google Scholar 

  2. Ohtsuki C, Aoki Y, Kokubo T, Bando Y, Neo M, Nakamura T (1995) Transmission electron microscopic observation of glass-ceramic A-W and apatite layer formed on its surface in a simulated body fluid. J Ceram Soc Japan 103:449–454

    Google Scholar 

  3. Chow LC (2009) Next generation calcium phosphate-based biomaterials. Dent Mater J 28:1–10

    Google Scholar 

  4. Ishikawa K (2010) Bone substitute fabrication based on dissolution-precipitation reactions. Materials 3:1138–1155

    Google Scholar 

  5. Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510

    Google Scholar 

  6. Hench LL, Andersson ÖL (1993) Bioactive glasses. In: Hench LL, Wilson J (eds) Introduction to bioceramics. World Scientific, Singapore, pp 41–62

    Google Scholar 

  7. Hench LL, Day DE, Höland W, Rheinberger VM (2000) Glass and medicine. Intern J Appl Glass Sci 1:104–117

    Google Scholar 

  8. Cormack AN, Tilocca A (2012) Structure and biological activity of glasses and ceramics. Philos Trans R Soc A 370:1271–1280

    Google Scholar 

  9. Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774

    Google Scholar 

  10. Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9:4457–4486

    Google Scholar 

  11. Clark AE, Pantano CG, Hench LL (1976) Auger spectroscopic analysis of bioglass corrosion films. J Am Ceram Soc 59:37–39; Hench LL (1975) Characterization of glass corrosion and durability. J Non-Crystal Solids 19:27–39

    Google Scholar 

  12. Hayakawa S, Tsuru K, Iida H, Ohtsuki C, Osaka A (1996) MAS NMR studies of apatite formation on 50CaO•50SiO2 glass in a simulated body fluid. Phys Chem Glasses 37:188–192

    Google Scholar 

  13. Hayakawa S, Tsuru K, Ohtsuki C, Osaka A (1999) Mechanism of apatite formation on a sodium silicate glass in a simulated body fluid. J Am Ceram Soc 82:2155–2160

    Google Scholar 

  14. Gross U, Stunz V (1985) The interface of various glasses and glass ceramics with a bony implantation bed. J Biomed Mat Res 19:251–271

    Google Scholar 

  15. Gross U, Müller-Mai C, Voigt C (1993) Ceravital® bioactive glass-ceramics. In: Hench LL, Wilson J (eds) Introduction to bioceramics. World Scientific, Singapore, pp 105–123

    Google Scholar 

  16. Vogel W, Höland W (1987) Development of bioglass ceramics for medical applications. Angew Chem Int Engl Ed 26:527–544

    Google Scholar 

  17. Vogt JC, Brandes G, Krüger I, Behrens P, Nolte I, Lenarz T, Stieve M (2008) A comparison of different nanostructured biomaterials in subcutaneous tissue. J Mater Sci Mater Med 19:2629–2636

    Google Scholar 

  18. Kokubo T (1991) Recent progress in glass-based materials for biomedical applications. J Ceram Soc 99:965–973

    Google Scholar 

  19. Neo M, Nakamura T, Yamamuro T, Ohtsuki C, Kokubo T (1993) Apatite formation on three kinds of bioactive mineral at an early stage in vivo: a comparative study by transmission electron microscopy. J Biomed Mater Res 27:999–1006

    Google Scholar 

  20. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915

    Google Scholar 

  21. Cho SB, Nakanishi K, Kokubo T, Soga N, Ohtsuki C, Nakamura T, Kitsugi T, Yamamuro T (1995) Dependence of apatite formation on silica gel on its structure: effect of heat treatment. J Am Ceram Soc 78:1769–1774

    Google Scholar 

  22. Kokubo T, Kushitani H, Ohtsuki C, Sakka S, Yamamuro T (1992) Chemical reaction of bioactive glass and glass-ceramics with a simulated body fluid. J Mater Sci Mater Med 3:79–83

    Google Scholar 

  23. Round robin test: The 9th World Biomaterials Congress, Chengdu, China, 1–5 June 2012

    Google Scholar 

  24. Nakanishi K (1997) Pore structure control of silica gels based on phase separation. J Porous Mater 4:67–112

    Google Scholar 

  25. Cho SB, Nakanishi K, Kokubo T, Soga N, Ohtsuki C, Nakamura T (1996) Apatite formation on silica gel in simulated body fluid: its dependence on structures of silica gels prepared in different media. J Biomed Mater Res 33:145–151

    Google Scholar 

  26. Tsuru K, Kubo M, Hayakawa S, Ohtsuki C, Osaka A (2001) Kinetics of apatite deposition of silica gel dependent on the inorganic ion composition of simulated body fluids. Ceram Soc Jpn 109:412–418

    Google Scholar 

  27. Onuma K, Ito A (1998) Cluster growth model for hydroxyapatite. Chem Mater 10:3346–3351

    Google Scholar 

  28. Posner AS, Betts F (1975) Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Acc Chem Res 8:273–281

    Google Scholar 

  29. Onuma K, Ito A, Tateishi T (1996) Investigation of a growth unit of hydroxyapatite crystal from the measurements of step kinetics. J Cryst Growth 167:773–776

    Google Scholar 

  30. Ducheyne P, Hench LL (1982) The processing and static mechanical properties of metal fibre reinforced bioglass. J Mater Sci 17:595–606

    Google Scholar 

  31. Hench LL, Andersson Ö (1993) Bioactive glass coatings. In: Hench LL, Wilson J (eds) Introduction to bioceramics. World Scientific, Singapore, pp 239–259

    Google Scholar 

  32. Ducheyene P, Martens M, Burssens A (1984) Materials, clinical and morphological evaluation of custom-made bioreactive-glass-coated canine. J Biomed Mater Res 18:1017–1030

    Google Scholar 

  33. Müller-Mai C, Schmitz HJ, Strunz V, Fuhrmann G, Fritz T, Gross UM (1989) Tissues at the surface of the new composite material titanium/glass-ceramic for replacement of bone and teeth. J Biomed Mater Res 23:1149–1168

    Google Scholar 

  34. Ferraris M, Rabajoli P, Paracchini L, Brossa F (1996) Vacuum plasma spray deposition of titanium particle/glass-ceramic matrix biocomposites. J Am Ceram Soc 79:1515–1520

    Google Scholar 

  35. Moritz N, Vedel E, Ylänen H, Jokinen M, Hupa M, Yli-Urpo A (2004) Characterisation of bioactive glass coatings on titanium substrates produced using a CO2 laser. J Mater Sci Mater Med 15:787–794

    Google Scholar 

  36. Foppiano S, Marshall SJ, Saiz E, Tomsia AP, Marshall GW (2006) Functionally graded bioactive coatings: reproducibility and stability of the coating under cell culture conditions. Acta Biomater 2:133–142

    Google Scholar 

  37. Gomez-Vega JM, Saiz E, Tomsia AP (1999) Glass-based coatings for titanium implant alloys. J Biomed Mater Res 46:549–559

    Google Scholar 

  38. Gomez-Vega JM, Saiz E, Tomsia AP, Marshall GW, Marshall SJ (2000) Bioactive glass coatings with hydroxyapatite and Bioglass® particles on Ti-based implants. 1. Processing. Biomaterials 21:105–111

    Google Scholar 

  39. Vitale-Brovarone C, Verné E (2005) SiO2-CaO-K2O coatings on alumina and Ti6Al4V substrates for biomedical applications. J Mater Sci Mater Med 16:863–871

    Google Scholar 

  40. Osaka A (2012) Beyond current interpretation of bonding between silicate ceramics and bone. Phosphorus Res Bull 26:18–22

    Google Scholar 

  41. Nagayama H, Honda H, Kawahara H (1988) A new process for silica coating. J Electrochem Soc 135:2013–2016

    Google Scholar 

  42. Hishinuma A, Goda T, Kitaoka M, Hayashi S, Kawahara H (1991) Formation of silicon dioxide films in acidic solutions. Appl Surf Sci 48–49:405–408

    Google Scholar 

  43. Deki S, Aoi Y, Asaoka Y, Kajinami A, Mizuhata M (1997) Monitoring the growth of titanium oxide thin films by the liquid-phase deposition method with a quartz crystal microbalance. J Mater Chem 7:733–736

    Google Scholar 

  44. Yao T, Inui T, Ariyoshi A (1996) Novel method for Zirconium Oxide synthesis from aqueous solution. J Am Ceram Soc 79:3329–3330

    Google Scholar 

  45. Ozawa N, Ideta Y, Yao T, Kokubo T (2003) Apatite formation on polymers coated with Titania synthesized from an aqueous solution. In: Ben-Nissan B, Sher D, Walsh W (eds) Proceedings of the 15th international symposium on ceramics in medicine, Sydney, 4–8 Dec 2002. Key Eng Mater 240–242:71–74

    Google Scholar 

  46. Sato K, Onodera D, Hibino M, Yao T (2006) Development of bioactive organic polymer coated with ceramic thin films synthesized from aqueous solution. In: Nakamura T, Yamashita K, Neo M (eds) Proceedings of the 18th international symposium on ceramics in medicine, Kyoto, Japan, 5–8 Dec 2005. Key Eng Mater 309–311:771–774

    Google Scholar 

  47. Tanahashi M, Yao T, Kokubo Y, Minoda M, Miyamoto T, Nakamura T, Yamamuro T (1994) Apatite coating on organic polymers by a biomimetic process. J Am Ceram Soc 77:2805–2808

    Google Scholar 

  48. Balasa F, Kawashita M, Nakamura T, Kokubo T (2006) Formation of bone-like apatite on organic polymers treated with a silane-coupling agent and a titania solution. Biomaterials 27:1704–1710

    Google Scholar 

  49. Oyane A, Kawashita M, Kokubo T, Minoda M, Miyamoto T, Nakamura T (2002) Bone-like apatite formation on ethylene-vinyl alcohol copolymer modified with a silane coupling agent and titania solution. J Ceram Soc Jpn 110:248–254

    Google Scholar 

  50. Pino M, Stingelin N, Tanner KE (2008) Nucleation and growth of apatite on NaOH-treated PEEK, HDPE and UHMWPE for artificial cornea materials. Acta Biomater 4:1827–1836

    Google Scholar 

  51. Choi S-M, Yang W-K, Yoo Y-W, Lee W-K (2010) Effect of surface modification on the in vitro calcium phosphate growth on the surface of poly(methyl methacrylate) and bioactivity. Colloids Surf B Biointerfaces 76:326–333

    Google Scholar 

  52. Yokogawa Y, Reyes JP, Mucalo MR, Toriyama M, Kawamoto Y, Suzuki T, Nishizawa K, Nagata F, Kameyama T (1997) Growth of calcium phosphate on phosphorylated chitin fibres. J Mater Sci Mater Med 8:407–412

    Google Scholar 

  53. Yokogawa Y, Nishizawa K, Nagata F, Kameyama T (2001) Bioactive properties of chitin/chitosan-calcium phosphate composite materials. J Sol-Gel Sci Technol 21:105–113

    Google Scholar 

  54. Fu T, He L-P, Han Y, Xu K-W, Mai Y-W (2003) Induction of bonelike apatite on carbon–carbon composite by sodium silicate. Mater Lett 57:3500–3503

    Google Scholar 

  55. Furuzono T, Masuda M, Okada M, Yasuda S, Hi K, Tanaka R, Miyatake K (2006) Increase in cell adhesiveness on a poly(ethylene terephthalate) fabric by sintered hydroxyapatite nanocrystal coating in the development of an artificial blood vessel. ASAIO J 52:315–320

    Google Scholar 

  56. Furuzono T, Kishida A, Tanaka J (2004) Nano-scaled hydroxyapatite/polymer composite I. Coating of sintered hydroxyapatite particles on poly(γ-methacryloxypropyl trimethoxysilane)- grafted silk fibroin fibers through chemical bonding. J Mater Sci Mater Med 15:19–23

    Google Scholar 

  57. Korematsu A, Furuzono T, Yasuda S, Tanaka J, Kishida A (2005) Nano-scaled hydroxyapatite/polymer composite III. Coating of sintered hydroxyapatite particles on poly(4-methacryloyloxyethyl trimellitate anhydride)-grafted silk fibroin fibers. J Mater Sci Mater Med 16:67–71

    Google Scholar 

  58. Zhang X, Fan Z, Lu Q, Huang Y, Kaplan DL, Zhu H (2013) Hierarchical biomineralization of calcium carbonate regulated by silk microspheres. Acta Biomater 9:6974–6980

    Google Scholar 

  59. Nakamura A, Shishido A, Kishida I, Okada M, Furuzono T, Yokogawa Y (2004) TEM observation of hydroxyapatite nanocrystals ionically bonded onto the graft polymer-modified PET substrate. J Ceram Soc Jpn 116:100–104

    Google Scholar 

  60. Furuzono T, Wang P-L, Korematsu A, Miyazaki K, Oido-Mori M, Kowashi Y, Ohura K, Tanaka J, Kishida A (2003) Physical and biological evaluations of sintered hydroxyapatite/silicone composite with covalent bonding for a percutaneous implant material. J Biomed Mater Res Part B Appl Biomater 65B:217–226

    Google Scholar 

  61. Homeijer SJ, Barrett RA, Gower LB (2010) Polymer-Induced Liquid-Precursor (PILP) process in the non-calcium based systems of barium and strontium carbonate. Cryst Growth Des 10:1040–1052

    Google Scholar 

  62. Wolf SE, Leiterer J, Pipich V, Barrea R, Emmerling F, Tremel W (2011) Strong stabilization of amorphous calcium carbonate emulsion by Ovalbumin: gaining insight into the mechanism of ‘Polymer-Induced Liquid Precursor’ processes. J Am Chem Soc 133:12642–12649

    Google Scholar 

  63. Huang WH, Day DE, Kittiratanapiboon K, Rahaman MN (2006) Kinetics and mechanism of the conversion of silicate (45S5), borate and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. J Mater Sci Mater Med 17:583–596

    Google Scholar 

  64. Han X, Day DE (2007) Reaction of sodium calcium borate glasses to form hydroxyapatite. J Mater Sci Mater Med 18:1837–1847

    Google Scholar 

  65. Li J, Shirosaki Y, Hayakawa S, Stamboulis A, Osaka A (2012) Sol-gel preparation of apatite-coated silica macrospheres from water glass and their adsorption of bovine serum albumin and lysozyme. J Ceram Soc Jpn 120:355–361

    Google Scholar 

  66. Li J, Shirosaki Y, Hayakawa S, Osaka A (2013) Revisiting structure of silica gels from water glass: an 1H and 29Si MAS and CP-MAS NMR study. J Sol-Gel Sci Technol 65:135–142

    Google Scholar 

  67. Chen S, Osaka A, Hayakawa S, Tsuru K, Fujii K (2008) Microstructure evolution in Stöber-type silica nanoparticles and their in vitro apatite deposition. J Sol-Gel Sci Technol 48:322–335

    Google Scholar 

  68. Liu C-H C, Maciel E (1996) The fumed silica surface: a study by NMR. J Am Chem Soc 118:5103–5119

    Google Scholar 

  69. Pham KN, Fullston D, Sagoe-Crentsil K (2007) Surface modification for stability of nano-sized silica colloids. J Colloid Interf Sci 315:123–127

    Google Scholar 

  70. Manzano M, Aina V, Aréan CO, Balas F, Cauda V, Colilla M, Delgado MR, Vallet-Regi M (2008) Studies on MCM-41 mesoporous silica for drug delivery: effect of particle morphology and amine functionalization. Chem Eng J 137:30–37

    Google Scholar 

  71. Chen S, Osaka A, Hayakawa S, Tsuru K, Fujii E, Kawabata K (2008) Novel one-pot sol-gel preparation of amino-functionalized silica nanoparticles. Chem Lett 37:1170–1171

    Google Scholar 

  72. Chen S, Hayakawa S, Shirosaki Y, Fujii E, Kawabata K, Tsuru K, Osaka A (2009) Sol–gel synthesis and microstructure analysis of amino-modified hybrid silica nanoparticles from aminopropyltriethoxysilane and tetraethoxysilane. J Am Ceram Soc 92:2074–2082

    Google Scholar 

  73. Pope EJA, Mackenzie JD (1986) Sol-gel processing of silica: II. The role of the catalyst. J Non-Cryst Solids 87:185–198

    Google Scholar 

  74. Anderson OH, Liu G-Z, Karlsson KH, Niemi L, Miettinen J, Juhanoja J (1990) In vivo behaviour of glasses in the SiO2–Na2O-CaO-P2O5–Al2O3–B2O3 system. J Mater Sci Mater Med 1:219–227

    Google Scholar 

  75. Brink M, Turunen T, Happonen R-P, Yli-Urpo A (1997) Compositional dependence of bioactivity of glasses in the system Na2O-K2O-MgO-CaO-B2O3-P2O5-SiO2. J Biomed Mater Res 37:114–121

    Google Scholar 

  76. Di Z, Vedel E, Hupa L, Aro HT, Hupa M (2009) Predicting physical and chemical properties of bioactive glasses from chemical composition. Part 3: In vitro reactivity. Eur J Glass Sci Technol Part A 50:1–8

    Google Scholar 

  77. Moritz N, Vedel E, Ylänen H, Jokinen M, Hupa M, Yli-Urpo A (2004) Characterisation of bioactive glass coatings on titanium substrates produced using a CO2 laser. J Mater Sci Mater Med 15:787–802

    Google Scholar 

  78. Rajedran V, Begum AN, Azooz MA, El Batal FH (2002) Microstructural dependence on relevant physical–mechanical properties on SiO2–Na2O–CaO–P2O5 biological glasses. Biomaterials 23:4263–4275

    Google Scholar 

  79. Lossdörfer S, Schwartz Z, Lohmann CH, Greenspan DC, Ranly DM, Boyan BD (2004) Osteoblast response to bioactive glasses in vitro correlates with inorganic phosphate content. Biomaterials 25:2547–2555

    Google Scholar 

  80. Debdas R (2007) In vitro reactivity of Na2O–MgO–SiO2 glasses. J Phys Chem Solids 68:2321–2325

    Google Scholar 

  81. Daguano JK, Rogero SO, Crovace MC, Peitl O, Strecker K, dos Santos C (2013) Bioactivity and cytotoxicity of glass and glass-ceramics based on the 3CaO-P2O5–SiO2–MgO system. J Mater Sci Mater Med. 24:2171–2180

    Google Scholar 

  82. Ebisawa Y, Sugimoto Y, Hayash T, Kokubo T, Ohura K, Yamamuro T (1991) Crystallization of (FeO, Fe2O3)-CaO-SiO2 glasses and magnetic properties of their crystallized products. J Ceram Soc Jpn 99:7–13

    Google Scholar 

  83. Li G, Feng S, Zhou D (2011) Magnetic bioactive glass ceramic in the system CaO–P2O5–SiO2–MgO–CaF2–MnO2–Fe2O3 for hyperthermia treatment of bone tumor. J Mater Sci Mater Med 22:2197–2206

    Google Scholar 

  84. Singh RK, Srinivasan A (2010) Apatite-forming ability and magnetic properties of glass-ceramics containing zinc ferrite and calcium sodium phosphate phases. Mater Sci Eng C 30:1100–1106

    Google Scholar 

  85. Zhang D, Leppäranta O, Munukka E, Ylänen H, Viljanen MK, Eerola E, Hupa M, Hupa L (2010) Antibacterial effects and dissolution behavior of six bioactive glasses. J Biomed Mater Res 93A:475–483

    Google Scholar 

  86. Hong Y-L, Chen X-S, Jing X-B, Fan H-S, Guo B, Gu Z-W, Zhang X-D (2010) Preparation, bioactivity, and drug release of hierarchical nanoporous bioactive glass ultrathin fibers. Adv Mater 22:754–758

    Google Scholar 

  87. Sepulveda P, Jones JR, Hench LL (2002) In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. J Biomed Mater Res 61:301–311

    Google Scholar 

  88. Chrisodoulou I, Buttery LDK, Saravanapavan P, Tai G-P, Hench LL, Polak JM (2005) Dose- and time-dependent effect of bioactive gel-glass ionic-dissolution products on human fetal osteoblast-specific gene expression. J Biomed Mater Res B Appl Biomater 74B:529–537

    Google Scholar 

  89. Lei B, Chen X-F, Koh Y-H (2011) Effects of acidic catalysts on the microstructure and biological property of sol–gel bioactive glass microspheres. J Sol-Gel Sci Technol 58:656–663

    Google Scholar 

  90. Valeiro P, Pereira MM, Goes AM, Leite MF (2004) The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterials 25:2941–2948

    Google Scholar 

  91. Zhang D, Jain H, Hupa M, Hupa L (2012) In-vitro degradation and bioactivity of tailored amorphous multi porous scaffold structure. J Am Ceram Soc 95:2687–2694

    Google Scholar 

  92. Arcos D, Vallet-Reggi M (2010) Sol-gel silica based biomaterials and bone tissue regeneration. Acta Biomater 6:2874–2888

    Google Scholar 

  93. Arcos D, Vila M, López-Noriega A, Rossignol F, Champion E, Oliveira FJ, Vallet-Reggí M (2011) Mesoporous bioactive glasses: mechanical reinforcement by means of a biomimetic process. Acta Biomat 7:2952–2959

    Google Scholar 

  94. Vaid C, Murugavel S (2013) Alkali oxide containing mesoporous bioactive glasses: synthesis, characterization and in vitro bioactivity. Mater Sci Eng C 33:959–968

    Google Scholar 

  95. Bellantone M, Coleman NJ, Hench LL (2000) Bacteriostatic action of a novel four-component bioactive glass. J Biomed Mater Res 51:484–490

    Google Scholar 

  96. Caturo M, Raucci M, De Gaetano F, Marrota A (2004) Antibacterial and bioactive silver-containing Na2O•CaO•2SiO2 glass prepared by sol-gel method. J Mater Sci Mater Med 15:831–837

    Google Scholar 

  97. Brown RF, Day DE, Day TE, Jung S, Rahaman MN, Fu Q (2008) Growth and differentiation of osteoblastic cells on 13–93 bioactive glass fibers and scaffolds. Acta Biomater 4:387–396

    Google Scholar 

  98. Fu Q, Rahaman MN, Bal SB, Brown RF (2010) Preparation and in vitro evaluation of bioactive glass (13–93) scaffolds with oriented microstructures for repair and regeneration of load-bearing bones. J Biomed Mater Res 93A:1380–1390

    Google Scholar 

  99. L-x B, Jung S, Day DE, Neidig K, Dusevich V, Eick D, Bonewald L (2012) Evaluation of bone regeneration, angiogenesis, and hydroxyapatite conversion in critical-sized rat calvarial defects implanted with bioactive glass scaffolds. J Biomed Mater Res Part A 100A:3267–3275

    Google Scholar 

  100. Liu X, Xie Z-P, Zhang C-Q, Pan H-B, Rahaman MN, Zhang X, Fu Q, Huang W-H (2010) Bioactive borate glass scaffolds: in vitro and in vivo evaluation for use as a drug delivery system in the treatment of bone infection. J Mater Sci Mater Med 21:575–582

    Google Scholar 

  101. Kasuga T, Hosoi Y, Nogami M, Niinomi M (2001) Apatite formation on calcium phosphate invert glasses in simulated body fluid. J Am Ceram Soc 84:450–452

    Google Scholar 

  102. Kasuga T (2005) Bioactive calcium pyrophosphate glasses and glass-ceramics. Acta Biomater 1:55–64

    Google Scholar 

  103. Fujii E, Kawabata K, Yohimatsu H, Hayakawa S, Tsuru K, Osaka A (2003) Structure and biomineralization of calcium silicate glasses containing fluoride ions. J Ceram Soc Jpn 111:762–766

    Google Scholar 

  104. Galliano PG, Lopes JMP (1995) Thermal behaviour of bioactive alkaline-earth silicophosphate glasses. J Mater Sci Mater Med 6:353–359

    Google Scholar 

  105. Brauer DS, Karpukhina N, O’Donnell MD, Law RV, Hill RG (2010) Fluoride-containing bioactive glasses: effect of glass design and structure on degradation, pH and apatite formation in simulated body fluid. Acta Biomater 6:3275–3282

    Google Scholar 

  106. Mneimne MG, Hill R, Bushby AJ, Brauer DS (2011) High phosphate content significantly increases apatite formation of fluoride-containing bioactive glasses. Acta Biomater 7:1827–1834

    Google Scholar 

  107. Lynch E, Brauer DS, Karpukhina N, Gillama DG, Hill RG (2012) Multi-component bioactive glasses of varying fluoride content for treating dentin hypersensitivity. Dent Mater 28:168–178

    Google Scholar 

  108. Cocchi M, Durante C, Lusvardi G, Malavasi G, Menabue L (2012) Evaluation of the behaviour of fluorine-containing bioactive glasses: reactivity in a simulated body fluid solution assisted by multivariate data analysis. J Mater Sci Mater Med 23:639–648

    Google Scholar 

  109. Wang Y-H, Osaka A, Miura Y (1989) Anionic conduction in lead oxyfluoride glasses. J Non-Cryst Solids 112:323–327

    Google Scholar 

  110. Brauer DS, Mneimne M, Hill G (2011) Fluoride-containing bioactive glasses: fluoride loss during melting and ion release in tris buffer solution. J Non-Cryst Solids 357:3328–3333

    Google Scholar 

  111. Massera J, Fagerlun S, Hupa L, Hupa M (2012) Crystallization mechanism of the bioactive glasses, 45S5 and S53P4. J Am Ceram Soc 95:607–613

    Google Scholar 

  112. Brink M (1997) The influence of alkali and alkaline earths on the working range for bioactive glasses. J Biomed Mater Res 36:109–117

    Google Scholar 

  113. Martín-Saavedra FM, Ruíz-Hernández E, Boré A, Arcos D, Vallet-Regí M, Vilaboa N (2010) Magnetic mesoporous silica spheres for hyperthermia therapy. Acta Biomater 6:4522–4531

    Google Scholar 

  114. Wang F, Tang Y-L, Zhang B-B, Chen B-D, Y-l W (2012) Preparation of novel magnetic hollow mesoporous silica microspheres and their efficient adsorption. J Colloid Interface Sci 386:129–134

    Google Scholar 

  115. Petchsang N, Pon-On W, Hodak JH, Tang IM (2009) Magnetic properties of Co-ferrite-doped hydroxyapatite nanoparticles having a core/shell structure. J Magn Magn Mater 321:1990–1995

    Google Scholar 

  116. Wu HC, Wang TW, Sun JS, Wang WH, Lin FH (2007) A novel biomagnetic nanoparticle based on hydroxyapatite. Nanotechnology 18:165601. doi:10.1088/0957-4484/18/16/165601

    Google Scholar 

  117. Maehara T, Konishi K, Kanmimori T, Aono J, Hirazawa H, Naohara T, Nomura S, Kikkawa H, Watanabe Y, Kawachi K (2005) Selection of ferrite powder for thermal coagulation therapy with alternating magnetic field. J Mater Sci Mater Med 40:135–138

    Google Scholar 

  118. Matsunaga T, Sakaguchi T (2000) Review: molecular mechanism of magnet formation in bacteria. J Biosci Bioeng 90:1–13

    Google Scholar 

  119. Matsunaga T, Okamura Y (2003) Genes and proteins involved in bacterial magnetic particle formation. TRENDS Microbiol 11:536–541

    Google Scholar 

  120. Tang YS, Wang D, Zhou C, Ma W, Zhang YQ, Liu B, Zhang S (2012) Bacterial magnetic particles as a novel and efficient gene vaccine delivery system. Gene Ther 19:1187–1195

    Google Scholar 

  121. Xynos ID, Edgar AJ, Buttery Lee DK, Hench LL, Polak JM (2001) Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J Biomed Mater Res 55:151–157

    Google Scholar 

  122. Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295:1014–1017

    Google Scholar 

  123. Conzone SD, Day DE (2009) Preparation and properties of porous microspheres made from borate glass. J Biomed Mater Res Part A 88A:531–542

    Google Scholar 

  124. Pouxviel JC, Boilot JP, Smaihi M, Dauger A (1988) Structural study of aluminosilicate sols and gels by small angle X-ray and neutron scattering. J Non-Cryst Solids 106:147–152

    Google Scholar 

  125. Ramirez-del-Solar M, Esquvias L, Craievich AF, Zarzycki JJ (1992) Ultrastructural evolution during gelation of TiO2-SiO2 sols. Non-Cryst Solids 147&148:206–212

    Google Scholar 

  126. Ohtsuki C, Kokubo T, Takatsuka K, Yamamuro T (1991) Compositional dependence of bioactivity of glasses in the system CaO-SiO2-P2O5 its in vitro evaluation. J Ceram Soc Jpn 99:1–6

    Google Scholar 

  127. Wang W, Huang D, Wang B, Darvell W, Day DE, Rahaman MN (2006) Preparation of hollow hydroxyapatite microspheres. J Mater Sci Mater Med 17:641–646

    Google Scholar 

  128. Huang W, Rahaman MN, Day DE, Miller BA (2009) Strength of hollow microspheres prepared by a glass conversion process. J Mater Sci Mater Med 20:123–129

    Google Scholar 

  129. Hayakawa S, Li Y, Tsuru K, Osaka A, Fujii E, Kawabata K (2009) Preparation of nanometer-scale rod array of hydroxyapatite crystal. Acta Biomater 5:2152–2160

    Google Scholar 

  130. Lotgering FK (1959) Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures. J Inorg Nucl Chem 9:113–123

    Google Scholar 

  131. Osaka A, Takahashi K (1983) Heats of solution of the glasses and crystals in the systems MO-P2O5 and bond energy relations in M(PO3)2 glasses. J Ceram Soc Jpn 91:395–398

    Google Scholar 

  132. Kasuga T, Abe Y (1999) Calcium phosphate invert glasses with soda and titania. J Non-Cryst Solids 243:70–74

    Google Scholar 

  133. Brow RK, Phifer CC, Turner GL, Kirkpatrick RJ (1991) Cation effects on 31P MAS NMR chemical shifts of metaphosphate glasses. J Am Ceram Soc 74:1287–1290

    Google Scholar 

  134. Yang WH, Kirkpatrick RJ, Turner G (1986) 31P and 29Si magic-angle sample-spinning NMR investigation of the structural environment of phosphorus in alkaline-earth silicate glasses. J Am Ceram Soc 69:C222–C223

    Google Scholar 

  135. Hosono H, Abe Y (1995) Porous glass–ceramics composed of a titanium phosphate crystal skeleton. J Non-Cryst Solids 190:185–197

    Google Scholar 

  136. Kasuga T, Kimata T, Obata A (2009) Preparation of a calcium titanium phosphate glass–ceramic with improved chemical durability. J Am Ceram Soc 92:1709–1712

    Google Scholar 

  137. Parks GA (1965) The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem Rev 65:177–198

    Google Scholar 

  138. Parks GA, de Bruyn PL (1962) The zero point of charge of oxides. J Phys Chem 66:969–973

    Google Scholar 

  139. Tengvall P, Lundström I (1992) Physico-chemical considerations of titanium as a biomaterial. Clin Mater 9:115–134

    Google Scholar 

  140. Uchida M, Kim HM, Kokubo T, Miyaji F, Nakamura T (2001) Bonelike apatite formation induced on zirconia gel in a simulated body fluid and its modified solutions. J Am Ceram Soc 84:2041–2044

    Google Scholar 

  141. Uchida M, Kim HM, Kokubo T, Tanaka K, Nakamura T (2002) Dependence of apatite formation on zirconia gels in a simulated body fluid. J Ceram Soc Jpn 110:710–715

    Google Scholar 

  142. Uchida M, Kim HM, Miyaji T, Kokubo F, Nakamura T (2002) Apatite formation on zirconium metal treated with aqueous NaOH. Biomaterials 23:313–317

    Google Scholar 

  143. Kokubo T, Matsushita T, Takadama H (2007) Titania-based bioactive materials. J Eur Ceram Soc 27:1553–1558

    Google Scholar 

  144. Kokubo T, Matsushita T, Takadama H, Kizuki T (2009) Development of bioactive materials based on surface chemistry. J Eur Ceram Soc 29:1267–1274

    Google Scholar 

  145. Uchida M, Kim HM, Kokubo T, Nawa M, Asano T, Tanaka K, Nakamura T (2002) Apatite-forming ability of a zirconia/alumina nano-composite induced by chemical treatment. J Biomed Mater Res 60:277–282

    Google Scholar 

  146. Miyazaki T, Kim HM, Kokubo T, Ohtsuki C, Kato H, Nakamura T (2001) Apatite-forming ability of niobium oxide gels in a simulated body fluid. J Ceram Soc Jpn 109:929–933

    Google Scholar 

  147. Miyazaki T, Kim HM, Kokubo T, Kato H, Nakamura T (2000) Bioactive tantalum metal prepared by NaOH treatment. J Biomed Mater Res 50:35–42

    Google Scholar 

  148. Miyazaki T, Kim HM, Kokubo T, Kato H, Nakamura T (2001) Induction and acceleration of bonelike apatite formation on tantalum oxide gel in simulated body fluid. J Sol-Gel Sci Technol 21:83–88

    Google Scholar 

  149. Kato H, Nakamura T, Nishiguchi S, Matsusue Y, Kobyashi M, Miyazaki T, Kim HM, Kokubo T (2000) Bonding of alkali- and heat-treated tantalum implants to bone. J Biomed Mater Res Appl Biomater 53:28–35

    Google Scholar 

  150. Li PJ, Ohtsuki C, Kokubo T, Nakanishi K, Soga N, de Groot K (1994) The role of hydrated silica, titania, and alumina in inducing apatite on implants. J Biomed Mater Res 28:7–15

    Google Scholar 

  151. Li P, Ohtsuki C, Kokubo T, Nakanishi K, Soga N, Nakamura T, Yamamuro T (1992) Apatite formation induced by silica gel in a simulated body fluid. J Am Ceram Soc 75:2094–2097

    Google Scholar 

  152. Abe Y, Kokubo T, Yamamuro T (1990) Apatite coating on ceramics, metals and polymers utilizing a biological process. J Mater Sci Mater Med 1:233–238

    Google Scholar 

  153. Taguchi T, Kishida A, Akashi M (1999) Apatite formation on/in hydrogel matrices using an alternate soaking process. III. Effect of physico-chemical factors on apatite formation on/in poly(vinyl alcohol) hydrogel matrices. J Biomater Sci Polym Ed 10:795–804

    Google Scholar 

  154. Takemoto M, Fujibayashi S, Neo M, Suzuki J, Kokubo T, Nakamura T (2006) Bone-bonding ability of a hydroxyapatite coated zirconia–alumina nanocomposite with a microporous surface. J Biomed Mater Res 78A:693–701

    Google Scholar 

  155. Kim HW, Kong YM, Bae CJ, Noh YJ, Kim HE (2004) Sol-gel derived fluor-hydroxyapatite biocoatings on zirconia substrate. Biomaterials 25:2919–1926

    Google Scholar 

  156. Nakamura S, Takeda H, Yamashita K (2001) Proton transport polarization and depolarization of hydroxyapatite ceramics. J Appl Phys 89:5386–5392

    Google Scholar 

  157. Itoh S, Nakamura S, Kobayashi T, Shinomiya K, Yamashita K (2006) Effect of electrical polarization of hydroxyapatite ceramics on new bone formation. Calcif Tissue Int 78:133–142

    Google Scholar 

  158. Okabayashi R, Nakamura M, Okabayashi T, Tanaka Y, Nagai A, Yamashita K (2009) Efficacy of polarized hydroxyapatite and silk fibroin composite dressing gel on epidermal recovery from full-thickness skin wounds. J Biomed Mater Res Appl Biomater B 90:641–646

    Google Scholar 

  159. Nakamura M, Nakamura S, Sekijima Y, Niwa K, Kobayashi T, Yamashita K (2006) Role of blood coagulation components as intermediators of high osteoconductivity of electrically polarized hydroxyapatite. J Biomed Mater Res A 79:627–634

    Google Scholar 

  160. Nakamura M, Inuzuka M, Hashimoto K, Nagai A, Yamashita K (2012) Polarized yttria-stabilized zirconia improves durability for degradation and apatite formation. Phosphorus Res Bull 26:77–80

    Google Scholar 

  161. Mariappan CR, Yunos DM, Boccaccini AR, Rolling B (2009) Bioactivity of electro-thermally poled bioactive silicate glass. Acta Biomater 5:1274–1283

    Google Scholar 

  162. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Google Scholar 

  163. Roy P, Berger S, Schmuki P (2011) Reviews: TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50:2904–2939

    Google Scholar 

  164. Yoko T, Kamiya K, Sakka S (1987) Photoelectrochemical properties of TiO2 films prepared by the sol-gel method. J Ceram Soc Jpn 95:150–155

    Google Scholar 

  165. Dislich H, Hussman E (1981) Amorphous and crystalline dip coatings obtained from organometallic solutions: procedures, chemical processes and products. Thin Solid Films 77:129–139

    Google Scholar 

  166. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Formation of titanium oxide nanotube. Langmuir 14:3160–3163

    Google Scholar 

  167. Yun YJ, Chung JS, Kim SW, Hahn SH, Kim EJ (2004) Low-temperature coating of sol-gel anatase thin films. Mater Lett 58:3703–3706

    Google Scholar 

  168. Sheng YG, Liang LP, Xu Y, Wu D, Wu YH, Sun YH (2008) Low-temperature deposition of the high-performance anatase-titania optical films via a modified sol-gel route. Opt Mater 30:1310–1315

    Google Scholar 

  169. Daoud WA, Xin JH (2004) Low temperature sol-gel processed photocatalytic titania coating. J Sol-Gel Sci Technol 29:25–29

    Google Scholar 

  170. Uekawa N, Kajiwara J, Kakegawa K, Sasaki Y (2002) Low temperature synthesis and characterization of porous anatase TiO2 nanoparticles. J Colloid Interface Sci 250:285–290

    Google Scholar 

  171. Jensen MJ, Fuiere PA (2006) Low-temperature preparation of nanocrystalline anatase films through a sol-gel route. J Sol-Gel Sci Technol 39:229–233

    Google Scholar 

  172. Hu Y, Yuan CW (2005) Low-temperature preparation of photocatalytic TiO2 thin films from anatase sols. J Cryst Growth 274:563–568

    Google Scholar 

  173. Shirosaki Y (2009) Private communication: courtesy of Shirosaki, Y

    Google Scholar 

  174. Colby MW, Osaka A, Mackenzie JD (1988) Temperature dependence of the gelation of silicon alkoxides. J Non-Cryst Solids 99:129–139

    Google Scholar 

  175. Li PJ, de Groot K (1993) Calcium phosphate formation within sol-gel prepared titania in vitro and in vivo. J Biomed Mater Res 27:1495–1500

    Google Scholar 

  176. Li PJ, Kangasniemi I, de Groot K, Kokubo T (1994) Bonelike hydroxyapatite induction by a gel-derived titania on titanium substrate. J Am Ceram Soc 77:1307–1312

    Google Scholar 

  177. Kumar KN, Zaspals P, Keizer K, Burggraaf AJ (1992) Drying process in the formation of sol-gel-derived TiO2 ceramic membrane. J Non-Cryst Solids 147&148:375–381

    Google Scholar 

  178. Grosso D, Cagnol F, de AA Soler-Illia GJ, Crepaldi EL, Ameitsch H, Brunet-Bruneau A, Bourgeois A, Sanchez C (2004) Fundamentals of mesostructuring through evaporation-induced self-assembly. Adv Funct Mater 14:309–322

    Google Scholar 

  179. Pätsi ME, Jautaniemi JA, Rhiala JM, Peltola TO, Kangasniemi IMO (1998) Bonding strengths of titania sol-gel-derived coatings on titanium. J Sol-Gel Sci Technol 11:55–66

    Google Scholar 

  180. Areva S, Lindén M (2003) Calcium phosphate formation on chemically modified titanium. In: Ben-Nissan B, Sher D, Walsh W (eds) Proceedings of the 15th international symposium on ceramic in medicine, Sydney, 2002. Key Eng Mater 240–242:465–468

    Google Scholar 

  181. Areva S, Peltola T, Säliynoja E, Laajalehto K, Lindén M, Rosenholm JB (2002) Effect of albumin and fibrinogen on calcium phosphate formation on sol-gel derived titania coatings in vitro. Chem Mater 14:1614–1621

    Google Scholar 

  182. Klinger A, Steinberg D, Kohavi D, Sela MN (1997) Mechanism of adsorption of human albumin to titanium in vitro. J Biomed Mater Res 36:387–392

    Google Scholar 

  183. Chen Y-L, Zhang X-F, Gon Y-D, Zhao N-M, Zeng T-Y, Song X-Q (1999) Conformational changes of fibrinogen adsorption onto hydroxyapatite and titanium oxide nanoparticles. J Colloid Interface Sci 214:38–45

    Google Scholar 

  184. Peltola T, Pätsi M, Rahiala H, Kangasniemi I, Yli-Urpo A (1998) Effect of aging time of sol on structure and in vitro calcium phosphate formation of sol-gel-derived titania films. J Biomed Mater Res 41:504–510

    Google Scholar 

  185. Jokinen M, Pätsi M, Rahiala H, Peltola T, Ritala M, Rosenholm JB (1998) Influence of sol and surface properties on in vitro bioactivity of sol-gel-derived TiO2 and TiO2-SiO2 films deposed by dip-coating method. J Biomed Mater Res 42:295–302

    Google Scholar 

  186. Peltola T, Jokinen M, Rahiala H, Pätsi M, Heikkilä J, Kangasniemi I, Yli-Urpo A (2000) Calcium phosphate induction by sol-gel-derived titania coatings on titanium substrates in vitro. J Biomed Mater Res 51:200–208

    Google Scholar 

  187. Uchida M, Kim H-M, Kokubo T, Fujibayashi S, Nakamura T (2003) Structural dependence of apatite formation on titania gels in a simulated body fluid. J Biomed Mater Res 64A:164–170

    Google Scholar 

  188. Areva S, Paldan H, Peltola T, Närhi T, Jokinen M, Linden M (2004) Use of sol-gel derived titania coating for direct soft tissue attachment. J Biomed Mater Res 70A:169–178

    Google Scholar 

  189. Rossi S, Moritz N, Tirri T, Peltola T, Areva S, Jokinen M, Happonen RP, Närhi T (2007) Comparison between sol-gel-derived anatase- and rutile-structured TiO2 coatings in soft-tissue environment. J Biomed Mater Res 82A:965–974

    Google Scholar 

  190. Zhao JM, Liu JF, Wu JM, Tsuru K, Hayakawa S, Osaka A (2006) Apatite formation on rutile and anatase layers derived by hydrolysis of titanylsulfate in a simulated body fluid. J Ceram Soc Japan 114:253–258

    Google Scholar 

  191. Harmankaya N, Karlsson J, Palmquist A, Halvarsson M, Igawa K, Andersson M, Tengvall P (2013) Raloxifene and alendronate containing thin mesoporous titanium oxide films improve implant fixation to bone. Acta Biomater 9:7064–7073

    Google Scholar 

  192. Liu K, Lin XL, Zhao JS (2013) Toxic effects of the interaction of titanium dioxide nanoparticles with chemicals or physical factors. Int J Nanomed 8:2509–2520

    Google Scholar 

  193. Shimizu K, Imai H, Hirashima H, Tsukuma K (1999) Low-temperature synthesis of anatase thin films on glass and organic substrates by direct deposition from aqueous solutions. Thin Solid Films 35:220–224

    Google Scholar 

  194. Wu JM, Hayakawa S, Tsuru K, Osaka A (2002) In vitro bioactivity of anatase film obtained by direct deposition from aqueous titanium tetrafluoride solutions. Thin Solid Films 414:283–288

    Google Scholar 

  195. Wu JM, Xiao F, Hayakawa S, Tsuru K, Takemoto S, Osaka A (2003) Bioactivity of metallic biomaterials with anatase layers deposited in acidic titanium tetrafluoride solution. J Mater Sci Mater Med 14:1027–1032

    Google Scholar 

  196. Xiao F, Tsuru K, Hayakawa S, Osaka A (2003) In vitro apatite deposition on titania film derived from chemical treatment of Ti substrates with an oxysulfate solution containing hydrogen peroxide at low temperature. Thin Solid Films 441:271–276

    Google Scholar 

  197. Hayakawa S, Liu JF, Tsuru K, Osaka A (2006) Wet deposition of titania-apatite composite in cotton fibrils. J Sol-gel Sci Technol 40:253–258

    Google Scholar 

  198. Wu JM, Liu JF, Hayakawa S, Tsuru K, Osaka A (2007) Low-temperature deposition of rutile film on biomaterials substrates and its ability to induce apatite deposition in vitro. J Mater Sci Mater Med 18:1529–1536

    Google Scholar 

  199. Kokubo T, Miyaji F, Kim HM, Nakamura T (1996) Spontaneous formation of bonelike apatite layer on chemically treated titanium metals. J Am Ceram Soc 79:1127–1129

    Google Scholar 

  200. Kim HM, Miyaji F, Kokubo T, Kitsugi T, Nakamura T (1996) Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res 32:409–417

    Google Scholar 

  201. Kim HM, Miyaji F, Kokubo T, Nakamura T (1997) Apatite-forming ability of alkali-treated Ti metal in body environment. J Ceram Soc Jpn 105:111–116

    Google Scholar 

  202. Kim HM, Miyaji F, Kokubo T, Nakamura T (1997) Effect of heat treatment on apatite-forming ability induced by alkali treatment. J Mater Sci Mater Med 8:341–347

    Google Scholar 

  203. Takadama H, Kim HM, Kokubo T, Nakamura T (2001) An X-ray photoelectron spectroscopy study of the process of apatite formation on bioactive titanium metal. J Biomed Mater Res 55:185–193

    Google Scholar 

  204. Takadama H, Kim HM, Kokubo T, Nakamura T (2001) TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid. J Biomed Mater Res 57:441–448

    Google Scholar 

  205. Fujibayashi S, Nakamura T, Nishiguchi S, Tamura J, Uchida M, Kim H-M, Kokubo T (2001) Bioactive titanium: effect of sodium removal on the bone-bonding ability of bioactive titanium prepared by alkali and heat treatment. J Biomed Mater Res 56:562–570

    Google Scholar 

  206. Uchida M, Kim H-M, Kokubo T, Fujibayashi S, Nakamura T (2002) Effect of water treatment on the apatite–forming ability of NaOH-treated titanium metal. J Biomed Mater Res 63:522–530

    Google Scholar 

  207. Takemoto M, Fujibayashi S, Neo M, Suzuki J, Matsushita T, Kokubo T, Nakamura T (2006) Osteoinductive porous titanium implants: effect of sodium removal by dilute HCl treatment. Biomaterials 27:2682–2691

    Google Scholar 

  208. Kawai T, Kizuki T, Takadama H, Matsushita M, Unuma H, Nakamura T, Kokubo T (2010) Apatite formation on surface titanate layer with different Na content on Ti metal. J Ceram Soc Jpn 118:19–24

    Google Scholar 

  209. Pattanayak DK, Yamaguchi S, Matsushita M, Kokubo T (2011) Nanostructured positively charged bioactive TiO2 layer formed on Ti metal by NaOH, acid and heat treatments. J Mater Sci Mater Med 22:1803–1812

    Google Scholar 

  210. Kizuki T, Takadama H, Matsushita T, Nakamura T, Kokubo T (2010) Preparation of bioactive Ti metal surface enriched with calcium ions by chemical treatment. Acta Biomater 6:2836–2842

    Google Scholar 

  211. Yamaguchi S, Kizuki T, Takadama H, Matsushita T, Nakamura T, Kokubo T (2012) Formation of a bioactive calcium titanate layer on gum metal by chemical treatment. J Mater Sci Mater Med 23:873–883

    Google Scholar 

  212. Yamaguchi S, Takadama H, Matsushita T, Nakamura T, Kokubo T (2010) Apatite-forming ability of Ti–15Zr–4Nb–4Ta alloy induced by calcium solution treatment. J Mater Sci Mater Med 21:439–444

    Google Scholar 

  213. Fukuda A, Takemoto M, Saito T, Fujibayashi S, Neo M, Yamaguchi S, Kizuki T, Matsushita T, Niinomi M, Kokubo T, Nakamura T (2011) Bone bonding bioactivity of Ti metal and Ti–Zr–Nb–Ta alloys with Ca ions incorporated on their surfaces by simple chemical and heat treatments. Acta Biomater 7:1379–1386

    Google Scholar 

  214. Fawzy AS, Amer MA (2009) An in vitro and in vivo evaluation of bioactive titanium implants following sodium removal treatment. Dent Mater 25:48–57

    Google Scholar 

  215. Ravelingien M, Mullens S, Luyten J, Meynen V, Vinck E, Vervaet C, Remon JP (2009) Thermal decomposition of bioactive sodium titanate surface. Appl Surf Sci 255:9539–9542

    Google Scholar 

  216. Ravelingien M, Hervent AS, Mullens S, Luyten J, Vervaet C, Remon JP (2010) Influence of surface topography and pore architecture of alkali-treated titanium on in vitro apatite deposition. Appl Surf Sci 256:3693–3697

    Google Scholar 

  217. Aparicio S, Manero JM, Conde F, Pegueroles M, Planell JA, Vallet-Regi M, Gil FJ (2007) Acceleration of apatite nucleation on microrough bioactive titanium for bone- replacing implants. J Biomed Mater Res Part A 82:521–529

    Google Scholar 

  218. Kizuki T, Takadama H, Matsushita T, Nakamura T, Kokubo T (2013) Effect of Ca contamination on apatite formation in a Ti metal subjected to NaOH and heat treatments. J Mater Sci Mater Med 24:635–644

    Google Scholar 

  219. Kokubo T, Pattanayak DK, Yamaguchi S, Takadama H, Matsushita M, Kawai T, Takemoto M, Fujibayashi S, Nakamura T (2010) Positively charged bioactive Ti metal prepared by simple chemical and heat treatments. J R Soc Interf 7:S503–S513

    Google Scholar 

  220. Kawai T, Takemoto M, Fujibayashi S, Akiyama H, Yamaguchi S, Pattanayak DK, Doi K, Matsushita T, Nakamura T, Kokubo T, Matsuda S (2013) Osteoconduction of porous Ti metal enhanced by acid and heat treatments. J Mater Sci Mater Med 24:1707–1715

    Google Scholar 

  221. Spriano S, Brozoni M, Rosalbino F, Verné E (2005) New chemical treatment for bioactive titanium alloy with high corrosion resistance. J Mater Sci Mater Med 16:203–211

    Google Scholar 

  222. Wen HB, Liu Q, De Wijn JR, De Groot K, Cui FZ (1998) Preparation of bioactive microporous titanium surface by a new two-step chemical treatment. J Mater Sci Mater Med 9:121–128

    Google Scholar 

  223. Jonášová L, Müller FA, Helebrant A, Strnad J, Greil P (2004) Biomimetic apatite formation on chemically treated titanium. Biomaterials 25:1187–1194

    Google Scholar 

  224. Zhao CY, Zhu XD, Yuan T, Fan HS, Zhang XD (2010) Fabrication of biomimetic apatite coating on porous titanium and their osteointegration in femurs of dogs. Mater Sci Eng C 30:98–104

    Google Scholar 

  225. Eliaz N, Ritman-Hertz O, Aronov D, Weinberg E, Shenhar Y, Rosenman G, Weinreb M, Ron E (2011) The effect of surface treatments on the adhesion of electrochemically deposited hydroxyapatite coating to titanium and on its interaction with cells and bacteria. J Mater Sci Mater Med 22:1741–1752

    Google Scholar 

  226. Osaka A, Hayakawa S, Tsuru K, Takemoto S, Kawabe Y, Iwatani S (2001) In vitro biomimetic deposition of apatite on chemically and electrochemically treated titanium. J Aust Ceram Soc 37:1–8

    Google Scholar 

  227. Yang BC, Uchida M, Kim HM, Zhang XD, Kokubo T (2004) Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials 25:1003–1010

    Google Scholar 

  228. Liang BJ, Fujibayashi S, Neo M, Tamura J, Kim HM, Uchida M, Kokubo T, Nakamura T (2003) Histological and mechanical investigation of the bone-bonding ability of anodically oxidized titanium in rabbits. Biomaterials 24:4959–4966

    Google Scholar 

  229. Zhao Y, Xiong TY, Huang WH (2010) Effect of heat treatment on bioactivity of anodic titania films. Appl Surf Sci 256:3073–3076

    Google Scholar 

  230. Yamamoto D, Iida T, Arii K, Kuroda K, Ichino R, Okido M, Seki A (2012) Surface hydrophilicity and osteoconductivity of anodized Ti in aqueous solutions with various solute ions. Mater Trans 53:1956–1961

    Google Scholar 

  231. Iwai-Yoshida M, Shibata Y, Wurihan, Suzuki D, Fujisawa N, Tanimoto Y, Kamijo R, Maki K, Miyazaki T (2012) Antioxidant and osteogenic properties of anodically oxidized titanium. J Mech Behav Biomed Mater 13:230–236

    Google Scholar 

  232. Hori N, Iwasa F, Tsukimura N, Sugita Y, Ueno T, Kojima N, Ogawa T (2011) Effects of UV photofunctionalization on the nanotopography enhanced initial bioactivity of titanium. Acta Biomater 7:3679–3691

    Google Scholar 

  233. Tsukimura N, Yamada M, Iwasa F, Minamikawa H, Att W, Ueno T, Saruwatari L, Aita H, Chious WA, Ogawa T (2011) Synergistic effects of UV photofunctionalization and micro-nano hybrid topography on the biological properties of titanium. Biomaterials 32:4358–4368

    Google Scholar 

  234. Shibata Y, Suzuki D, Omori S, Tanaka R, Murakami A, Kataoka Y, Baba K, Kamijo R, Miyazaki T (2010) The characteristics of in vitro biological activity of titanium surfaces anodically oxidized in chloride solutions. Biomaterials 31:8546–8555

    Google Scholar 

  235. Att W, Hori N, Takeuchi M, Ouyang JY, Yang Y, Anpo M, Ogawa T (2009) Biomaterials 30:5352–5363

    Google Scholar 

  236. Khang DW, Choi J, Im YM, Kim YJ, Jang JH, Kang SS, Nam TH, Song J, Park JW (2012) Role of subnano-, nano- and submicron-surface features on osteoblast differentiation of bone marrow mesenchymal stem cells. Biomaterials 33:5997–6007

    Google Scholar 

  237. Tengvall P, Elwing H, Sjöqvist L, Lundström I, Bjursten LM (1989) Interaction between hydrogen peroxide and titanium: a possible role in the biocompatibility of titanium. Biomaterials 10:118–120

    Google Scholar 

  238. Tengvall P, Lundström I, Sjöqvist L, Elwing H, Bjursten LM (1989) Titanium-hydrogen peroxide interaction: model studies of the influence of the inflammatory response on titanium implants. Biomaterials 10:166–175

    Google Scholar 

  239. Ohtsuki C, Iida H, Hayakawa S, Osaka A (1997) Bioactivity of titanium treated with hydrogen peroxide solutions containing metal chlorides. J Biomed Mater Res 35:39–47

    Google Scholar 

  240. Ohtsuki C, Unpublished data, private communication

    Google Scholar 

  241. Wang XX, Hayakawa S, Tsuru K, Osaka A (2000) Improvement of bioactivity of H2O2/TaCl5-treated titanium after subsequent heat treatments. J Biomed Mater Res 52:171–176

    Google Scholar 

  242. Kaneko S, Tsuru K, Hayakawa S, Takemoto K, Ohtsuki C, Ozaki T, Inoue H, Osaka A (2001) In vivo evaluation of bone-bonding of titanium metal chemically treated with a hydrogen peroxide solution containing tantalum chloride. Biomaterials 22:875–881

    Google Scholar 

  243. Kim T, Suzuki M, Ohtsuki C, Masuda K, Tamai H, Watanabe E, Osaka A, Moriya H (2003) Enhancement of bone growth in titanium fiber mesh by surface modification with hydrogen peroxide solution containing tantalum chloride. J Biomed Mater Res Part B Appl Biomater 64B:19–26

    Google Scholar 

  244. Laleh M, Kargar F (2011) Formation of high bioactive nanoporous titania film by hybrid surface mechanical attrition treatment. Mater Let 65:2295–2298

    Google Scholar 

  245. Yoneyama Y, Matsuno T, Hashimoto Y, Satoh T (2013) In vitro evaluation of H2O2 hydrothermal treatment of aged titanium surface to enhance biofunctional activity. Dent Mater J 32:115–121

    Google Scholar 

  246. Wang XX, Hayakawa S, Tsuru K, Osaka A (2002) Bioactive titania gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution. Biomaterials 23:1353–1357

    Google Scholar 

  247. Wu JM, Hayakawa S, Tsuru K, Osaka A (2002) Crystallization of anatase from amorphous titania in hot water and in vitro biomineralization. J Ceram Soc Jpn 110:78–80

    Google Scholar 

  248. Wu JM, Hayakawa S, Tsuru K, Osaka A (2003) Early apatite deposition on titanium treated by hydrogen peroxide. J Aust Ceram Soc 39:36–42

    Google Scholar 

  249. Wu JM, Tsuru K, Hayakawa S, Osaka A (2004) Low-temperature preparation of anatase and rutile layer on titanium substrate and their ability to induce in vitro apatite deposition. J Am Ceram Soc 87:1635–1642

    Google Scholar 

  250. Wang XX, Hayakawa S, Tsuru K, Osaka A (2001) A comparative study of in vitro apatite deposition on heat-, H2O2, and NaOH-treated titanium surfaces. J Biomed Mater Res 54:172–178

    Google Scholar 

  251. Wang XX, Yan W, Hayakawa S, Tsuru K, Osaka A (2003) Apatite deposition on thermally and anodically oxidized titanium surfaces in a simulated body fluid. Biomaterials 24:4631–4637

    Google Scholar 

  252. Sugino A, Uetsuki K, Tsuru K, Hayakawa S, Ohtsuki C, Osaka A (2008) Gap effect on the heterogeneous nucleation of apatite on thermally oxidized titanium substrate. Key Eng Mater 361–363:621–624

    Google Scholar 

  253. Sugino A, Uetsuki K, Tsuru K, Hayakawa S, Osaka A, Ohtsuki C (2008) Surface topography designed to provide osteoconductivity to titanium after thermal oxidation. Mater Trans 49:428–434

    Google Scholar 

  254. Sugino A, Tsuru K, Hayakawa S, Kikuta K, Kawachi G, Osaka A, Ohtsuki C (2009) Induced deposition of bone-like hydroxyapatite on thermally oxidized titanium substrates using a spatial gap in a solution that mimics a body fluid. J Ceram Soc Jpn 117:515–520

    Google Scholar 

  255. Shozui T, Tsuru K, Hayakawa S, Osaka A (2008) Enhancement of in vitro apatite-forming ability of thermally oxidized titanium surfaces by ultraviolet irradiation. J Ceram Soc Jpn 116:530–535

    Google Scholar 

  256. Uetsuki K, Akasaka K, Nakai S, Shirosaki Y, Hayakawa S, Osaka A (2011) Mechanism of stimulated apatite nucleation on Titania layer by UV-irradiation and autoclaving. Presented at the 11th Asian BioCeramics symposium in conjunction with the 22nd symposium on apatite, 30 Nov–2 Dec 2011, Tsukuba, Japan

    Google Scholar 

  257. Sato K (2007) Mechanism of hydroxyapatite mineralization in biological systems. J Ceram Soc Jpn 115:124–130

    Google Scholar 

  258. Sato K, Kogure T, Kumagai Y, Tanaka J (2001) Crystal orientation of hydroxyapatite induced by ordered carboxyl groups. J Colloid Interf Sci 240:133–138

    Google Scholar 

  259. Wang Y, Azais T, Robin M, Vallée A, Catania C, Legriel P, Pehau-Armaidet G, Babonneau F, Giraud-Guille MM, Nassif N (2012) The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite. Nat Mater 11:724–733

    Google Scholar 

  260. Nassif N, Gobeaux F, Seto J, Belamie E, Davidson P, Panine P, Mosser G, Fratzl P, Giraud Guille MM (2010) Self-assembled collagen-apatite matrix with bone-like hierarchy. Chem Mater 22:3307–3309

    Google Scholar 

  261. Landis WJ, Song MJ, Leith A, McEwen L, McEwen BF (1993) Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. J Struct Biol 110:39–54

    Google Scholar 

  262. Landis W, Hodgens K, Song MJ, Arena J, Kiyonaga S, Marko M, Owen C, McEwen BF (1996) Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging. J Struct Biol 117:24–35

    Google Scholar 

  263. Bewernitz MA, Gevayerm D, Long J, Cölfen H, Gower LB (2012) A metastable liquid precursor phase of calcium carbonate and its interactions with polyaspartate. Faraday Discuss 159:291–312

    Google Scholar 

  264. Hu Y, Mackenzie JD (1992) Rubber-like elasticity of organically modified silicates. J Mater Sci 27:4415–4420

    Google Scholar 

  265. Tsuru K, Ohtsuki C, Osaka A, Iwamoto T, Mackenzie JD (1997) Bioactivity of sol-gel derived organically modified silicates. J Mater Sci Mater Med 8:157–161

    Google Scholar 

  266. Yabuta T, Bescher EP, Mackenzie JD, Tsuru K, Hayakawa S, Osaka A (2003) Synthesis of PDMS-based porous materials for biomedical applications. J Sol-gel Sci Tech 26:1219–1222

    Google Scholar 

  267. Kataoka K, Nagao Y, Nukui T, Akiyama I, Tsuru K, Hayakawa S, Osaka A, Huh NH (2005) An organic-inorganic hybrid scaffold for the culture of HepG2 cells in a bioreactor. Biomaterials 26:2509–2516

    Google Scholar 

  268. Yoshioka T, Tsuru K, Hayakawa S, Osaka A (2004) Preparation of organotitanium molecular layers for biomedical applications. Mater Sci Eng C 24:901–905

    Google Scholar 

  269. Curcio M, Altimari I, Spizzirri UG, Cirillo G, Vittorio O, Puoci F, Picci N, Iemma F (2013) Biodegradable gelatin-based nanospheres as pH-responsive drug delivery systems. J Nanopart Res 15:1581–1592

    Google Scholar 

  270. Mahony O, Tsigkou O, Ionescu C, Minelli C, Ling L, Hanly R, Smith ME, Stevens MM, Jones JR (2010) Silica-gelatin hybrids with tailorable degradation and mechanical properties for tissue regeneration. Adv Funct Mater 20:3835–3845

    Google Scholar 

  271. Lu HX, Oh HH, Kawazoe N, Yamagishi K, Chen G (2012) PLLA–collagen and PLLA–gelatin hybrid scaffolds with funnel-like porous structure for skin tissue engineering. Sci Technol Adv Mater 13:064210. doi:10.1088/1468-6996/13/6/064210

    Google Scholar 

  272. Ren L, Tsuru K, Hayakawa S, Osaka A (2002) Novel approach to fabricate porous gelatin–siloxane hybrids for bone tissue engineering. Biomaterials 23:4765–4773

    Google Scholar 

  273. Ren L, Tsuru K, Hayakawa S, Osaka A (2001) Incorporation of Ca2+ ions in gelatin-siloxane hybrids through a sol-gel process. J Ceram Soc Jpn 109:406–411

    Google Scholar 

  274. Wüstneck R, Buder E, Wetzel R, Hermel H (1989) The modification of the triple helical structure of gelatin in aqueous solution, 3: the influence of cationic surfactants. Colloid Polym Sci 267:429–435

    Google Scholar 

  275. Deguchi K, Tsuru K, Hayashi T, Takaishi M, Nagahara M, Nagotani S, Sehara Y, Jin G, Zhang H, Hayakawa S, Shoji M, Miyazaki M, Osaka A, Huh NH, Abe K (2006) Implantation of a new porous gelatin–siloxane hybrid into a brain lesion as a potential scaffold for tissue regeneration. J Cereb Blood Flow Metab 26:1263–1273

    Google Scholar 

  276. Munoz-Pinto DJ, McMahon RE, Kanzelberger MA, Jimenez-Vergara AC, Grunlan MA, Hahn MS (2010) Inorganic–organic hybrid scaffolds for osteochondral regeneration. J Biomed Mater Res 94A:112–121

    Google Scholar 

  277. Thibault RA, Mikos AG, Kasper FK (2013) Scaffold/extracellular matrix hybrid constructs for bone-tissue engineering. Adv Healthcare Mater 2:13–24

    Google Scholar 

  278. Jayasuriya AC, Bhat A (2010) Fabrication and characterization of novel hybrid organic/ inorganic microparticles to apply in bone regeneration. J Biomed Mater Res 93A:1280–1288

    Google Scholar 

  279. Gómez-Romero P, Sanches C, Hüsing N, Schubert U (2004) Porous inorganic-organic hybrid materials. In: Functional hybrid materials. Wiley, Weinheim

    Google Scholar 

  280. Shirosaki Y, Osaka A, Tsuru K, Hayakawa S (2012) Inorganic-organic sol-gel hybrids. In: Bio-glasses: an introduction. Wiley, Chichester

    Google Scholar 

  281. Kickelbick G, Hüsing N (2007) Hybrid materials: synthesis, characterization, and applications. Wiley-VCH, Weinheim

    Google Scholar 

  282. Shirosaki Y, Tsuru K, Hayakawa S, Osaka A, Lopes MA, Santos JD, Costa MA, Fernandes MH (2009) Physical, chemical and in vitro biological profile of chitosan hybrid membrane as a function of organosiloxane concentration. Acta Biomater 5:346–355

    Google Scholar 

  283. Shirosaki Y, Okayama T, Tsuru K, Hayakawa S, Osaka A (2008) Synthesis and cytocompatibility of porous chitosan-silicate hybrids for tissue engineering scaffold application. Chem Eng J 137:122–128

    Google Scholar 

  284. Mauricio AC (2009) Unpublished data, private communication

    Google Scholar 

  285. Amado S, Simoes MJ, Armada da Silva PAS, Luis AL, Shirosaki Y, Lopes MA, Santos JD et al (2008) Use of hybrid chitosan membranes and N1E-115 cells for promoting nerve regeneration in an axonotmesis rat model. Biomaterials 29:4409–4419

    Google Scholar 

  286. Simoes MJ, Amado S, Gärtner A, Armada da Silva PAS, Raimondo S, Vieira M, Luis AL, Shirosaki Y et al (2010) Italian. J Anat Embryol 115:175–195

    Google Scholar 

Download references

Acknowledgment

The author is very grateful of all the works introduced here and should apologize for not all work pertinent to this topic are described, as it is impossible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiyoshi Osaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Osaka, A. (2014). Self-Assembly and Nano-layering of Apatitic Calcium Phosphates in Biomaterials. In: Ben-Nissan, B. (eds) Advances in Calcium Phosphate Biomaterials. Springer Series in Biomaterials Science and Engineering, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53980-0_5

Download citation

Publish with us

Policies and ethics