Skip to main content

Mapping Posttranslational Regulation of Filaggrin Using Phosphoproteomics

  • Chapter
  • First Online:
Filaggrin
  • 922 Accesses

Abstract

Recent advances in phosphoproteomics and other proteomic technologies have demonstrated that many proteins contain multiple posttranslational modifications (PTMs), any of which could potentially influence protein function. Obviously, not all sites on a protein are modified to the same extent under different physiological and pathophysiological conditions, so the key is to determine if there are specific PTMs or patterns of PTMs that can be used to predict protein function in response to a stimulus or within a particular disease environment. In the case of filaggrin with at least 96 phosphorylation sites identified to date through multiple global phosphoproteomic analyses (and curated data at www.phosphosite.org), the number of potential filaggrin variants with altered functions is staggering. Even this high number likely represents an underrepresentation of all potential filaggrin phosphorylation sites due to challenges in performing phosphoproteomic measurements in general and unique challenges of analyzing filaggrin due to its large size, repetitive nature, and expression in complex differentiated tissue such as skin. In addition, identifying differences in the phosphorylation status of specific sites, as well as their roles in filaggrin regulation, remains a significant challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang F, Waters KM, Webb-Robertson BJ, Sowa MB, von Neubeck C, Aldrich JT, et al. Quantitative phosphoproteomics identifies filaggrin and other targets of ionizing radiation in a human skin model. Exp Dermatol. 2012;21(5):352–7. PubMed PMID: 22509832. Pubmed Central PMCID: 3387810.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Zanivan S, Gnad F, Wickstrom SA, Geiger T, Macek B, Cox J, et al. Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res. 2008;7(12):5314–26. PubMed PMID: 19367708.

    Article  CAS  PubMed  Google Scholar 

  3. Lander ES. The new genomics: global views of biology. Science. 1996;274(5287):536–9. PubMed PMID: 8928008. Epub 1996/10/25. eng.

    Article  CAS  PubMed  Google Scholar 

  4. Oda Y, Nagasu T, Chait BT. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat Biotechnol. 2001;19(4):379–82. PubMed PMID: 11283599. Epub 2001/04/03. eng.

    Article  CAS  PubMed  Google Scholar 

  5. Shi SDH, Hemling ME, Carr SA, Horn DM, Lindh I, McLafferty FW. Phosphopeptide/phosphoprotein mapping by electron capture dissociation mass spectrometry. Anal Chem. 2001;73(1):19–22. PubMed PMID: WOS:000166262500012.

    Article  CAS  PubMed  Google Scholar 

  6. Collins MO, Yu L, Coba MP, Husi H, Campuzano I, Blackstock WP, et al. Proteomic analysis of in vivo phosphorylated synaptic proteins. J Biol Chem. 2005;280(7):5972–82. PubMed PMID: 15572359. Epub 2004/12/02. eng.

    Article  CAS  PubMed  Google Scholar 

  7. Delom F, Chevet E. Phosphoprotein analysis: from proteins to proteomes. Proteome Sci. 2006;4:15. PubMed PMID: 16854217. Epub 2006/07/21. eng.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Collins MO, Yu L, Choudhary JS. Analysis of protein phosphorylation on a proteome-scale. Proteomics. 2007;7(16):2751–68. PubMed PMID: 17703509. Epub 2007/08/19. eng.

    Article  CAS  PubMed  Google Scholar 

  9. Ciesla J, Fraczyk T, Rode W. Phosphorylation of basic amino acid residues in proteins: important but easily missed. Acta Biochim Pol. 2011;58(2):137–48. PubMed PMID: 21623415.

    CAS  PubMed  Google Scholar 

  10. Yang F, Camp 2nd DG, Gritsenko MA, Luo Q, Kelly RT, Clauss TR, et al. Identification of a novel mitotic phosphorylation motif associated with protein localization to the mitotic apparatus. J Cell Sci. 2007;120(Pt 22):4060–70. PubMed PMID: 17971412.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Y, Wolf-Yadlin A, Ross PL, Pappin DJ, Rush J, Lauffenburger DA, et al. Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol Cell Proteomics. 2005;4(9):1240–50. PubMed PMID: 15951569.

    Article  CAS  PubMed  Google Scholar 

  12. Porath J, Carlsson J, Olsson I, Belfrage G. Metal chelate affinity chromatography, a new approach to protein fractionation. Nature. 1975;258(5536):598–9. PubMed PMID: 1678.

    Article  CAS  PubMed  Google Scholar 

  13. Reinders J, Sickmann A. State-of-the-art in phosphoproteomics. Proteomics. 2005;5(16):4052–61. PubMed PMID: 16196093.

    Article  CAS  PubMed  Google Scholar 

  14. Dunn JD, Reid GE, Bruening ML. Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. Mass Spectrom Rev. 2010;29(1):29–54. PubMed PMID: 19263479.

    CAS  PubMed  Google Scholar 

  15. Ballif BA, Villen J, Beausoleil SA, Schwartz D, Gygi SP. Phosphoproteomic analysis of the developing mouse brain. Mol Cell Proteomics. 2004;3(11):1093–101. PubMed PMID: 15345747.

    Article  CAS  PubMed  Google Scholar 

  16. Han G, Ye M, Zhou H, Jiang X, Feng S, Jiang X, et al. Large-scale phosphoproteome analysis of human liver tissue by enrichment and fractionation of phosphopeptides with strong anion exchange chromatography. Proteomics. 2008;8(7):1346–61. PubMed PMID: 18318008.

    Article  CAS  PubMed  Google Scholar 

  17. Ham BM, Yang F, Jayachandran H, Jaitly N, Monroe ME, Gritsenko MA, et al. The influence of sample preparation and replicate analyses on HeLa Cell phosphoproteome coverage. J Proteome Res. 2008;7(6):2215–21. PubMed PMID: 18412383. Pubmed Central PMCID: 2517255.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. McNulty DE, Annan RS. Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol Cell Proteomics. 2008;7(5):971–80. PubMed PMID: 18212344.

    Article  CAS  PubMed  Google Scholar 

  19. Zarei M, Sprenger A, Metzger F, Gretzmeier C, Dengjel J. Comparison of ERLIC-TiO2, HILIC-TiO2, and SCX-TiO2 for global phosphoproteomics approaches. J Proteome Res. 2011;10(8):3474–83. PubMed PMID: 21682340.

    Article  CAS  PubMed  Google Scholar 

  20. Di Palma S, Boersema PJ, Heck AJ, Mohammed S. Zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC and ZIC-cHILIC) provide high resolution separation and increase sensitivity in proteome analysis. Anal Chem. 2011;83(9):3440–7. PubMed PMID: 21443167.

    Article  PubMed  Google Scholar 

  21. Wells JM, McLuckey SA. Collision-induced dissociation (CID) of peptides and proteins. Methods Enzymol. 2005;402:148–85. PubMed PMID: 16401509.

    Article  CAS  PubMed  Google Scholar 

  22. Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A. 2004;101(26):9528–33. PubMed PMID: 15210983. Pubmed Central PMCID: 470779.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Zubarev RA, Horn DM, Fridriksson EK, Kelleher NL, Kruger NA, Lewis MA, et al. Electron capture dissociation for structural characterization of multiply charged protein cations. Anal Chem. 2000;72(3):563–73. PubMed PMID: 10695143.

    Article  CAS  PubMed  Google Scholar 

  24. Boersema PJ, Mohammed S, Heck AJ. Phosphopeptide fragmentation and analysis by mass spectrometry. J Mass Spectrom. 2009;44(6):861–78. PubMed PMID: 19504542.

    Article  CAS  PubMed  Google Scholar 

  25. Bakalarski CE, Haas W, Dephoure NE, Gygi SP. The effects of mass accuracy, data acquisition speed, and search algorithm choice on peptide identification rates in phosphoproteomics. Anal Bioanal Chem. 2007;389(5):1409–19. PubMed PMID: 17874083.

    Article  CAS  PubMed  Google Scholar 

  26. Beausoleil SA, Villen J, Gerber SA, Rush J, Gygi SP. A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol. 2006;24(10):1285–92. PubMed PMID: 16964243.

    Article  CAS  PubMed  Google Scholar 

  27. Yang F, Waters KM, Miller JH, Gritsenko MA, Zhao R, Du X, et al. Phosphoproteomics profiling of human skin fibroblast cells reveals pathways and proteins affected by low doses of ionizing radiation. PLoS One. 2010;5(11):e14152. PubMed PMID: 21152398. Pubmed Central PMCID: 2994767.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, et al. Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics. 2005;4(10):1487–502. PubMed PMID: 15979981.

    Article  CAS  PubMed  Google Scholar 

  29. Yang F, Wu S, Stenoien DL, Zhao R, Monroe ME, Gritsenko MA, et al. Combined pulsed-Q dissociation and electron transfer dissociation for identification and quantification of iTRAQ-labeled phosphopeptides. Anal Chem. 2009;81(10):4137–43. PubMed PMID: 19371082. Pubmed Central PMCID: 2749721.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Martinovic S, Veenstra TD, Anderson GA, Pasa-Tolic L, Smith RD. Selective incorporation of isotopically labeled amino acids for identification of intact proteins on a proteome-wide level. J Mass Spectrom. 2002;37(1):99–107. PubMed PMID: 11813317.

    Article  PubMed  Google Scholar 

  31. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics. 2002;1(5):376–86. PubMed PMID: 12118079.

    Article  CAS  PubMed  Google Scholar 

  32. Ong SE, Kratchmarova I, Mann M. Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J Proteome Res. 2003;2(2):173–81. PubMed PMID: 12716131.

    Article  CAS  PubMed  Google Scholar 

  33. Ross PL, Huang YLN, Marchese JN, Williamson B, Parker K, Hattan S, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics. 2004;3(12):1154–69. PubMed PMID: WOS:000226100700002.

    Article  CAS  PubMed  Google Scholar 

  34. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074–80. PubMed PMID: 11498575. Epub 2001/08/11. eng.

    Article  CAS  PubMed  Google Scholar 

  35. Du Y, Parks BA, Sohn S, Kwast KE, Kelleher NL. Top-down approaches for measuring expression ratios of intact yeast proteins using Fourier transform mass spectrometry. Anal Chem. 2006;78(3):686–94. PubMed PMID: WOS:000235195200022.

    Article  CAS  PubMed  Google Scholar 

  36. Roth MJ, Forbes AJ, Boyne MT, Kim YB, Robinson DE, Kelleher NL. Precise and parallel characterization of coding polymorphisms, alternative splicing, and modifications in human proteins by mass spectrometry. Mol Cell Proteomics. 2005;4(7):1002–8. PubMed PMID: WOS:000230334500013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Siuti N, Kelleher NL. Decoding protein modifications using top-down mass spectrometry. Nat Methods. 2007;4:817–21. PubMed PMID: WOS:000249778200014.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Thomas CE, Kelleher NL, Mizzen CA. Mass spectrometric characterization of human histone H3: a bird’s eye view. J Proteome Res. 2006;5(2):240–7. PubMed PMID: WOS:000235317600003.

    Article  CAS  PubMed  Google Scholar 

  39. Young NL, Dimaggio PA, Plazas-Mayorca MD, Baliban RC, Floudas CA, Garcia BA. High-throughput characterization of combinatorial histone codes. Mol Cell Proteomics. 2009;8:2266–84. PubMed PMID: 19654425. Epub 2009/08/06. Eng.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Boyne 2nd MT, Pesavento JJ, Mizzen CA, Kelleher NL. Precise characterization of human histones in the H2A gene family by top down mass spectrometry. J Proteome Res. 2006;5(2):248–53. PubMed PMID: 16457589. Epub 2006/02/07. eng.

    Article  CAS  PubMed  Google Scholar 

  41. Pesavento JJ, Kim YB, Taylor GK, Kelleher NL. Shotgun annotation of histone modifications: a new approach for streamlined characterization of proteins by top down mass spectrometry. J Am Chem Soc. 2004;126(11):3386–7. PubMed PMID: WOS:000220286400009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Siuti N, Roth MJ, Mizzen CA, Kelleher NL, Pesavento JJ. Gene-specific characterization of human histone H2B by electron capture dissociation. J Proteome Res. 2006;5(2):233–9. PubMed PMID: WOS:000235317600002.

    Article  CAS  PubMed  Google Scholar 

  43. Forbes AJ, Patrie SM, Taylor GK, Kim YB, Jiang LH, Kelleher NL. Targeted analysis and discovery of posttranslational modifications in proteins from methanogenic archaea by top-down MS. Proc Natl Acad Sci USA. 2004;101(9):2678–83. PubMed PMID: WOS:000220065300008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Han XM, Jin M, Breuker K, McLafferty FW. Extending top-down mass spectrometry to proteins with masses greater than 200 kilodaltons. Science. 2006;314(5796):109–12. PubMed PMID: WOS:000241031200046.

    Article  CAS  PubMed  Google Scholar 

  45. Zabrouskov V, Ge Y, Schwartz J, Walker JW. Unraveling molecular complexity of phosphorylated human cardiac troponin I by top down electron capture dissociation/electron transfer dissociation mass spectrometry. Mol Cell Proteomics. 2008;7(10):1838–49. PubMed PMID: 18445579. Epub 2008/05/01. eng.

    Article  CAS  PubMed  Google Scholar 

  46. Sandilands A, Sutherland C, Irvine AD, McLean WH. Filaggrin in the frontline: role in skin barrier function and disease. J Cell Sci. 2009;122(Pt 9):1285–94. PubMed PMID: 19386895. Pubmed Central PMCID: 2721001. Epub 2009/04/24. eng.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Lonsdale-Eccles JD, Teller DC, Dale BA. Characterization of a phosphorylated form of the intermediate filament-aggregating protein filaggrin. Biochemistry. 1982;21(23):5940–8. PubMed PMID: 6185144. Epub 1982/11/09. eng.

    Article  CAS  PubMed  Google Scholar 

  48. Palosuo T, Lukka M, Alenius H, Kalkkinen N, Aho K, Kurki P, et al. Purification of filaggrin from human epidermis and measurement of antifilaggrin autoantibodies in sera from patients with rheumatoid arthritis by an enzyme-linked immunosorbent assay. Int Arch Allergy Immunol. 1998;115(4):294–302. PubMed PMID: 9566352.

    Article  CAS  PubMed  Google Scholar 

  49. Resing KA, Walsh KA, Haugen-Scofield J, Dale BA. Identification of proteolytic cleavage sites in the conversion of pro-filaggrin to filaggrin in mammalian epidermis. J Biol Chem. 1989;264(3):1837–45. PubMed PMID: 2912987. Epub 1989/01/25. eng.

    CAS  PubMed  Google Scholar 

  50. McKinley-Grant LJ, Idler WW, Bernstein IA, Parry DA, Cannizzaro L, Croce CM, et al. Characterization of a cDNA clone encoding human filaggrin and localization of the gene to chromosome region 1q21. Proc Natl Acad Sci U S A. 1989;86(13):4848–52. PubMed PMID: 2740331. Pubmed Central PMCID: 297512. Epub 1989/07/01. eng.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Nagaraj N, D’Souza RC, Cox J, Olsen JV, Mann M. Feasibility of large-scale phosphoproteomics with higher energy collisional dissociation fragmentation. J Proteome Res. 2010;9(12):6786–94. PubMed PMID: 20873877.

    Article  CAS  PubMed  Google Scholar 

  52. Shaw JB, Madsen JA, Xu H, Brodbelt JS. Systematic comparison of ultraviolet photodissociation and electron transfer dissociation for peptide anion characterization. J Am Soc Mass Spectrom. 2012;23(10):1707–15. PubMed PMID: 22895858.

    Article  CAS  PubMed  Google Scholar 

  53. Choy DF, Hsu DK, Seshasayee D, Fung MA, Modrusan Z, Martin F, et al. Comparative transcriptomic analyses of atopic dermatitis and psoriasis reveal shared neutrophilic inflammation. J Allergy Clin Immunol. 2012;130(6):1335–43 e5. PubMed PMID: 22920495. Pubmed Central PMCID: 3511596.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Broccardo CJ, Mahaffey S, Schwarz J, Wruck L, David G, Schlievert PM, et al. Comparative proteomic profiling of patients with atopic dermatitis based on history of eczema herpeticum infection and Staphylococcus aureus colonization. J Allergy Clin Immunol. 2011;127(1):186–93. 93 e1–11. PubMed PMID: 21211653. Pubmed Central PMCID: 3059191.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Stenoien PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg (outside the USA)

About this chapter

Cite this chapter

Stenoien, D.L. (2014). Mapping Posttranslational Regulation of Filaggrin Using Phosphoproteomics. In: Thyssen, J., Maibach, H. (eds) Filaggrin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54379-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54379-1_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54378-4

  • Online ISBN: 978-3-642-54379-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics