Skip to main content

Part of the book series: Heat and Mass Transfer ((HMT))

  • 1142 Accesses

Abstract

This book is presenting in its first part two important heat pumping technologies (production of cooling and heating), introduced by the author lately. These are the coabsorbent technology (Chaps. 27) and the mecanical vapor compression refrigeration and heating COP increase, using the discharge gas superheat (Chap. 8). In the next chapters, the book is including author’s own researches concerning a non-equilibrium phenomenological two-point theory of mass and heat transfer in physical and chemical interactions (Chap. 9), a new wording of the Laplace equation and the variational numerical and analytical approach of the liquid capillary rise effect (Chap. 10). In the book last part, Marangoni convection basic mechanism explanation, pseudo-Marangoni cells model and the absorption-desorption mass and heat exchangers model application are presented (Chap. 11). In this first introductory chapter, selected topic of thermodynamics is attached, in order to complete the subjects elaborated and facilitate the book reading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balamuru, V. G., Ibrahim, O. M., & Barnett, S. M. (2000). Simulation of ternary ammonia–water–salt absorption refrigeration cycles. International Journal of Refrigeration, 23(2000), 31–42.

    Article  Google Scholar 

  • Bosnjakovic, F. (1965). Technical Thermodynamics. New York: Holt, Rinehart et Wiston. (translated from German).

    Google Scholar 

  • Bourseau, P., & Bugarel, R. (1986). Réfrigération par cycle à absorption–diffusion: Comparaison des performances des systèmes NH3–H2O et NH3–NaSCN. International Journal of Refrigeration, 9(1986), 206–214.

    Article  Google Scholar 

  • Chartier, P., Gross, M., & Spiegler, K. S. (1975). Applications de la thermodinamique du non-équilibre. Paris: Hermann.

    Google Scholar 

  • Dodescu, G. (1979). Numerical methods in Algebra (in Romanian). Technical Publishing House, Bucharest.

    Google Scholar 

  • Patek, J., & Klomfar, J. (1995). Simple functions for fast calculations of selected thermodynamic properties of the ammonia-water system. International Journal of Refrigeration, 18(4), 228–234.

    Article  Google Scholar 

  • Patek, J., & Klomfar, J. (2006a). A computationally effective formulation of the thermodynamic properties of LiBr–H2O solutions from 273 to 500 K over full composition range. International Journal of Refrigeration, 29(2006), 566–578.

    Article  Google Scholar 

  • Patek, J., & Klomfar, J. (2006b). Solid-liquid phase equilibrium in the systems of LiBr–H2O and LiCl–H2O. Fluid Phase Equilibria, 250(2006), 138–149.

    Article  Google Scholar 

  • Patek, J., & Klomfar, J. (2007). Thermodynamic properties of LiCl–H2O system at vapor-liquid equilibrium from 273 to 400 K. International Journal of Refrigeration, 31, 1–17.

    Google Scholar 

  • Plank, R. (1953). Thermodynamische grundlagen. Berlin: Springer.

    Book  Google Scholar 

  • Funk, H. (1948). Mitt Kältetechn Inst Techn Hochschule Karlsruhe 3, 33.

    Google Scholar 

  • Gibbs, J. W. (1876). On the equilibrium of heterogeneous substances. Transaction on Connectcut Academy of Arts and Sciences, 2, 309, 382(1873), 3, 108, 343, 520 (1875–1878).

    Google Scholar 

  • Haar, L. (1968). Properties of Ammonia as an ideal gas. Journal of Research of the National Bureau of Standards Section A Physics and Chemistry, 72A(2), 207–216.

    Article  Google Scholar 

  • Helmholz, v. H. (1902). Abhandlungen zur Thermodynamik chemischer Vorgänge, Ostwalds Klassiker, nr. 124, Leipzig.

    Google Scholar 

  • Infante Ferreira, C. A. (1984). Thermodynamic and physical property data equations for ammonia–lithium nitrate and ammonia–sodium thiocyanate solutions. Solar Energy, 32(2), 231–236.

    Article  Google Scholar 

  • Keenan, J. H., Keyes, F. G., Hill, P. G., & Moore, J. G. (1978). Steam tables. New York: Wiley.

    Google Scholar 

  • Kirilin, V. A., Sicev, V. V., & Seindlin, A. E. (1985). Thermodynamics. Scientific and Technical Publishing House, Bucharest, 540p (in Romanian).

    Google Scholar 

  • Lewis, G. H., & Randall, M. (1961). Thermodynamics, revised by K.S. Pitzner and L. Brewer, New York, Toronto, London, p. 445.

    Google Scholar 

  • McNeely, A. L. (1979). Thermodynamic properties of aqueous solutions of lithium bromide, ASHRAE Transactions, 85(T1)(3), 413, PH-79-3.

    Google Scholar 

  • Mollier, R. (1926). Neue Tabellen und Diagrame für Wasserdampf, 4 Auflage, Springer, Berlin.

    Google Scholar 

  • Murgulescu, I. G., & Vîlcu, R. (1982). Introduction in the physical chemistry (Vol. 3). Bucharest: Publishing House of the Romanian Socialist Republic Academy. (in Romanian).

    Google Scholar 

  • Nicolescu, M. (1977–1980) Mathematical Analysis, Vol. I, II. Bucharest: The Didactic and Pedagogic Publishing House.

    Google Scholar 

  • Niebergall, W. (1959). Handbuch der Kältetechnik, Sorptions-Kältemaschinen (Vol. 7). Berlin: Springer.

    Book  Google Scholar 

  • Popa, B., & Vintila, C. (1977). Termotechnics and thermal machines. Bucharest: The Didactic and Pedagogic Publishing House. (in Romanian).

    Google Scholar 

  • Radermacher, R., & Alefeld, G. (1982). Lithiumbromid-Wasser—Lösungen als Absorber für Ammoniak oder Methylamin, Brennstoff-Wärme-Kraft, 34(1), 31–38.

    Google Scholar 

  • Radcenco, V., Porneala, S., & Dobrovicescu, A. (1983). Processes in refrigeration installations. Bucharest: Didactic and Pedagogic Publishing House. (in Romanian).

    Google Scholar 

  • Rowlinson, J. S., & Swinton, F. L. (1982). Liquids and liquid mixtures, 3rd En. London: Butteworths.

    Google Scholar 

  • Schultz, S. (1971). Eine Fundamentalgleichung für das Gemisch aus Ammoniak und Wasser und die Berechnung von Asorptionskältemascinen-Prozessen. Habilitationsschrift Abt. Maschienenbau und konstructiven Ingenieurbau. Ruhr Univesität Bochum.

    Google Scholar 

  • Staicovici, M. D. (2013). On the phase equilibrium computation in binary mixtures involved in absorption technology, Sent for publication to Revue Ruomaine des Sciences Techniques, série Électrotechnique et Énergetique, Romanian Academy.

    Google Scholar 

  • Stamatescu, C. (1972). Cooling technology, part I. Bucharest: Technical Publishing House. (in Romanian).

    Google Scholar 

  • Rysselberghe, V. (1963). Thermodynamics of irreversible processes. Paris: Herman.

    MATH  Google Scholar 

  • Ziegler, B. & Trepp, Ch. (1984). Equation of state for ammonia–water mixtures. International Journal of Refrigeration, 7(2), 101.

    Google Scholar 

  • Ziegler, F. (2005). Absorption cycle basics revisited. In International Sorption Heat Pump Conference, Denver, ISHPC-082-2005, June 22–24, 2005.

    Google Scholar 

  • Xu, F., & Goswami, D. Y. (1997). Thermodynamic properties of ammonia–water mixtures for power-cycle applications. Energy, 24(1999), 525–536.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihail-Dan Staicovici .

Appendix 1

Appendix 1

  1. (i)

    In Eq. (1.120), \( \ln \frac{{T_{2} }}{{T_{1} }} \) is written as:

$$ \ln \frac{{T_{2} }}{{T_{1} }} = \ln \frac{1 + x}{1 - x} = f\left( x \right) $$
(A1.1)

where

$$ x = \frac{{T_{2} - T_{1} }}{{T_{2} + T_{1} }},\;x \in \left[ {0,1} \right),\;x < < 1. $$
(A1.2)

The function f(x) of Eq. (A1.1), arranged in a different form:

$$ f\left( x \right) = \ln \left( {1 + x} \right) - \ln \left( {1 - x} \right) $$
(A1.3)

is derivated, in order to obtain:

$$ f^{{\prime }} \left( x \right) = \frac{1}{1 + x} + \frac{1}{1 - x} $$
(A1.4)

The ratios in Eq. (A1.4) are expressed using the infinite series of power:

$$ \frac{1}{1 \pm x} = 1 \pm \sum\limits_{i = 1}^{\infty } {\left( { - x} \right)}^{i} $$
(A1.5)

We introduce Eq. (A1.5) in Eq. (A1.4) and totalize. The same rank terms of Eq. (A1.5) are vanishing through summation, except the first ones, hence Eq. (A1.4) results as:

$$ f^{{\prime }} \left( x \right) = 2 $$
(A1.6)

Integrating Eq. (A1.6) between T 1 and T 2, the following result holds true (see Eq. A1.2):

$$ f\left( x \right) = 2x = \ln \frac{1 + x}{1 - x} $$
(A1.7)

Introducing Eqs. (A1.7) and (A1.2) in Eq. (A1.1), it results:

$$ \ln \frac{{T_{2} }}{{T_{1} }} = 2\frac{{T_{2} - T_{1} }}{{T_{2} + T_{1} }} $$
(A1.8)

and further, with it, Eq. (1.122) holds true:

$$ \theta \left( \xi \right) = 1 - \frac{{T_{0} }}{{\frac{{T_{1} + T_{2} }}{2}}} $$
(A1.9)
  1. (ii)

    The 2nd principle equation is written with intensive parameters and at equilibrium, as follows:

$$ Tds = du + pdv $$
(A1.10)

In Eq. (A1.10) the specific entropy, internal energy and volume are written in function of the extensive values as \( s = \frac{S}{G} \), \( u = \frac{U}{G} \) and \( v = \frac{V}{G} \), respectively. Differentiating these expressions, it is obtained:

$$ \begin{aligned} ds &= \frac{GdS - SdG}{{G^{2} }} \\ du & = \frac{GdU - UdG}{{G^{2} }} \\ dv & = \frac{GdV - VdG}{{G^{2} }} \\ \end{aligned} $$
(A1.11)

Introducing Eq. (A1.11) in Eq. (A1.10), after arranging some terms, it results:

$$ TGdS = GdU - \left( {U - TS} \right)dG + p\left( {GdV - VdG} \right) $$
(A1.12)

In Eq. (A1.12):

$$ \left( {U - TS} \right) = F = Gf $$
(A1.13)

Introducing Eq. (A1.13) in Eq. (A1.12) and dividing the entire Eq. (A1.12) by G, it is obtained:

$$ TdS = dU - fdG + pdV - p\frac{V}{G}dG $$
(A1.14)

In Eq. (A1.14) we take into account that \( \frac{V}{G} = v \). Further Eq. (A1.14) is partially derivated with respect to G for U = const. and V = const., wherefrom the following result holds true:

$$ T\left( {\frac{\partial S}{\partial G}} \right)_{U,V} = \left( {\frac{\partial U}{\partial G}} \right)_{U,V} - f + p\left( {\frac{\partial V}{\partial G}} \right)_{U,V} - pv $$
(A1.15)

In Eq. (A1.15) right side the members in the brackets are vanishing and bearing in mind that f + pv = φ, the needed entropy partial derivative is obtained:

$$ \left( {\frac{\partial S}{\partial G}} \right)_{U,V} = - \frac{\varphi }{T} $$
(A1.17)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Staicovici, MD. (2014). Introduction. In: Coabsorbent and Thermal Recovery Compression Heat Pumping Technologies. Heat and Mass Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54684-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54684-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54683-9

  • Online ISBN: 978-3-642-54684-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics