Skip to main content

Modeling and Performance Analysis of GPS/GLONASS/BDS Precise Point Positioning

  • Conference paper
  • First Online:
China Satellite Navigation Conference (CSNC) 2014 Proceedings: Volume III

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 305))

Abstract

The main challenge of dual-frequency precise point positioning (PPP) is that it requires about 30 min to obtain a centimeter level accuracy. Currently, PPP is generally conducted with GPS only using the ionosphere-free combination. Along with the competition of the first phase of the Beidou Navigation Satellite System (BDS) which comprising 5 satellites in Geostationary Orbit (GEO), 5 in Inclined Geosynchronous Orbit (IGSO) and 4 in Medium Earth Orbit (MEO) by the end of 2012, the regional navigation capabilities has been formed and the visibility and availability have been significantly improved for users in the Asia-Pacific regional area. Attention has been paid to improve the performance of PPP by combining BDS and other navigation satellite system (GPS/GLONASS). This study introduces a single-differenced (SD) between-satellite PPP model which can process any single-system or multi-system GNSS (GPS/GLONASS/BDS) raw dual-frequency carrier phase measurements. In this model, the GPS satellite with the highest elevation is selected as the reference satellite to form the SD between-satellite measurements. Thus the GPS receiver clock offset is canceled and only a system time offset between GPS and other GNSS system is estimated for the observations of GLONASS or BDS. In the proposed model, noisy pseudorange measurements are ignored thus modeling the pseudorange stochastic model is not required. The stochastic model for SD measurements and states can be easily realized by mapping that for undifferenced measurements and states. Also the correlation of the SD measurements is considered. Using a 7-day data set from 10 multiple system GNSS stations, we have investigated the performance of single-system PPP, GPS/GLONASS PPP and GPS/GLONASS/BDS PPP, including convergence speed and positioning accuracy. The contribution of BDS observation to the performance of multi-GNSS PPP is analyzed and assessed with special concern. Numerous experimental results indicate that after adding BDS observations, the convergence time can be reduced by 10–12 % for GPS PPP, and reduced by about 5–7 % for GPS/GLONASS PPP further. Besides, BDS observations can contribute to improving the accuracy of kinematic PPP with 3 h observations. After adding BDS observations, the RMS in kinematic mode is improved by 14.3, 7.1 and 7.5 % for GPS PPP while 11.1, 16.7 and 6.5 % for GPS/GLONASS PPP, in the east, north and up directions, respectively. For GPS/GLONASS/BDS PPP, an accuracy of 1–2 cm in horizontal and 2–3 cm in vertical directions can be achieved in kinematic mode while an accuracy of less than 1 cm in horizontal and 1–2 cm in vertical directions can be achieved in static mode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kouba J, Héroux H (2001) Precise point positioning using IGS orbit and clock products. GPS Solutions 5(2):12–28

    Article  Google Scholar 

  2. Zumberge J, Heflin M, Jefferson D, Watkins M, Webb F (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005–5017

    Article  Google Scholar 

  3. Gendt G, Dick G, Reigber C, Tomassini M, Liu Y, Ramatschi M (2004) Near real time GPS water vapor monitoring for numerical weather prediction in Germany. J Meteorol Soc Japan. Ser. II 82(1B):361–370

    Google Scholar 

  4. Rocken C, Johnson J, Van Hove T, Iwabuchi T (2005) Atmospheric water vapor and geoid measurements in the open ocean with GPS. Geophys Res Lett 32(12):L12813

    Article  Google Scholar 

  5. Calais E, Han JY, DeMets C, Nocquet JM et al (2006) Deformation of the North American plate interior from a decade of continuous GPS measurements. J Geophys Res 111:B6402

    Google Scholar 

  6. Hammond WC, Thatcher W (2005) Northwest basin and range tectonic deformation observed with the global positioning system, 1999–2003. J Geophys Res Solid Earth 110(B10405B10)

    Google Scholar 

  7. Zhang XH, Li P, Guo F (2013) Ambiguity resolution in precise point positioning with hourly data for global single receiver. Adv Space Res 51(1):153–161

    Article  Google Scholar 

  8. Yang YX, Li JL, Xu JY, Tang J, Guo HR, He HB (2011) Contribution of the Compass satellite navigation system to global PNT users. Chin Sci Bull 56(26):2813–2819. doi:10.1007/s11434-011-4627-4

    Article  Google Scholar 

  9. Shi C, Zhao QL, Li M, Tang WM, Hu ZG, Lou YD, Zhang HP, Niu XJ, Liu JN (2012) Precise orbit determination of Beidou satellites with precise positioning. Sci China Earth Sci 55(7):1079–1086

    Article  Google Scholar 

  10. Liu Y, Lou Y, Shi C et al (2013) BeiDou regional navigation system network solution and precision analysis. In: Proceedings of the 4th China satellite navigation conference (CSNC), Wuhan, China, 15–17 May 2013

    Google Scholar 

  11. Li W, Teunissen PJG, Zhang B, Verhagen S (2013) Precise point positioning using GPS and Compass observations. In: Proceedings of the 4th China satellite navigation conference (CSNC), Wuhan, China, 15–17 May 2013

    Google Scholar 

  12. Cai C, Gao Y (2013) Modeling and assessment of combined GPS/GLONASS precise point positioning. GPS Solutions 17(2):223–236

    Article  MathSciNet  Google Scholar 

  13. Li P, Zhang XH (2013) Integrating GPS and GLONASS to accelerate convergence and initialization times of precise point positioning. GPS Solutions. doi:10.1007/s10291-013-0345-5

    Google Scholar 

  14. Defraigne P, Baire Q (2011) Combining GPS and GLONASS for time and frequency transfer. Adv Sp Res 47(2):265–275

    Article  Google Scholar 

  15. Blewitt G (1989) Carrier phase ambiguity resolution for the global positioning system applied to geodetic baselines up to 2000 km. J Geophys Res 94(B8):10187–10203

    Article  Google Scholar 

  16. Rebischung P, Griffiths J, Ray J, Schmid R, Collilieux X, Garayt B (2012) IGS08: the IGS realization of ITRF2008. GPS Solutions 16(4):483–494

    Article  Google Scholar 

  17. Ge M, Gendt G, Rothacher M, Shi C, Liu J (2008) Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J Geodesy 82(7):389–399

    Article  Google Scholar 

  18. Zhang XH, Li P (2013) Assessment of correct fixing rate for precise point positioning ambiguity resolution on global scale. J Geodesy 87(6):579–589

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by National 973 Project China (Grant No. 2013CB733301) and National Natural Science Foundation of China (Grant No. 41074024, No. 41204030) and the Fundamental Research Funds for the Central Universities (No.: 2012214020207). Thanks to GNSS Research Center of Wuhan University for providing the BDS orbit and clock products, ESA for providing the GPS/GLONASS orbit and clock products. The authors also thank IGS-MGEX and Curtin University for providing the Multi-constellation GNSS data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, P., Zhang, X. (2014). Modeling and Performance Analysis of GPS/GLONASS/BDS Precise Point Positioning. In: Sun, J., Jiao, W., Wu, H., Lu, M. (eds) China Satellite Navigation Conference (CSNC) 2014 Proceedings: Volume III. Lecture Notes in Electrical Engineering, vol 305. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54740-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54740-9_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54739-3

  • Online ISBN: 978-3-642-54740-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics