Skip to main content

High Resolution Atmospheric Sensing Using UAVs

  • Conference paper
Distributed Autonomous Robotic Systems

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 104))

Abstract

A technique to obtain high resolution atmospheric data using small mobile sensors is presented. A fluid based control scheme using smoothed particle hydrodynamics (SPH) is implemented to perform field measurements in a leader follower arrangement for a team of unmanned aerial vehicles (UAVs) equipped with environmental sensors. A virtual leader is created by using a reduced density SPH particle to guide the unmanned aerial vehicles along a desired path. Simulations using the control scheme demonstrate excellent measurement ability, swarm coherence, and leader following capability for large swarms. A K-means algorithm is used to reduce the measurement error and provide accurate interpolation of the field measurement data. Experimental results are presented which demonstrate the guidance and collision avoidance properties of the control scheme using real UAVs. Readings from the UAV’s temperature and humidity sensor suite are used with the K-means algorithm to produce a smooth estimation of the respective distribution fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sensefly autonomous ultralight uav for professionals@ONLINE (October 2012)

    Google Scholar 

  2. Allred, J., Hasan, A., Pisano, B., Panichsakul, S., Gray, P., Han, R., Lawrence, D., Mohseni, K.: SensorFlock: A mobile system of networked micro-air vehicles. In: The ACM SenSys 2007: The 5th ACM Conference on Embedded Networked Sensor Systems, Sydney, Australia, November 6-9 (2007)

    Google Scholar 

  3. Amzajerdian, F., Pierrottet, D., Petway, L., Hines, G., Roback, V.: Lidar systems for precision navigation and safe landing on planetary bodies, p. 7 (2011)

    Google Scholar 

  4. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University (2003)

    Google Scholar 

  5. Campbell, J.: Introduction to Remote Sensing. The Guilford Press (1996)

    Google Scholar 

  6. Corrigan, C.E., Roberts, G.C., Ramana, M.V., Kim, D., Ramanathan, V.: Capturing vertical profiles of aerosols and black carbon over the Indian Ocean using autonomous unmanned aerial vehicles. Atmospheric Chemistry & Physics Discussions 7, 11429–11463 (2007)

    Article  Google Scholar 

  7. Hardin, P., Jensen, R.: Small-scale unmanned aerial vehicles in environmental remote sensing: Challenges and opportunities (2011)

    Google Scholar 

  8. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer (2009)

    Google Scholar 

  9. Hauert, S., Leven, S., Varga, M., Ruini, F., Cangelosi, A., Zufferey, J., Floreano, D.: Reynolds flocking in reality with fixed-wing robots: communication range vs. maximum turning rate. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5015–5020. IEEE (2011)

    Google Scholar 

  10. Holland, G., Webster, P., Curry, J., Tyrell, G., Gauntlett, D., Brett, G., Becker, J., Hoag, R., Vaglienti, W.: The aerosonde robotic aircraft: A new paradigm for environmental observations. Bulletin of the American Meteorological Society 82(5) (May 2001)

    Google Scholar 

  11. Huhn, S., Mohseni, K.: Cooperative control of a team of AUVs using smoothed particle hydrodynamics with restricted communication. In: Proceedings of the ASME 28th International Conference on Ocean, Offshore and Arctic Engineering, Honalulu, HA, May 31-June 5, OMAE 2009-79869 (2009)

    Google Scholar 

  12. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control 48(6) (2003)

    Google Scholar 

  13. Jensen, J.R.: Remote Sensing of the Environment: An Earth Resource Perspective, 2nd edn. Prentice Hall (May 2006)

    Google Scholar 

  14. Lawrence, D., Frew, E., Pisano, W.: Lyapunov vector fields for autonomous unmanned aircraft flight control. Journal of Guidance, Control, and Dynamics 31(5), 1220–1229 (2008)

    Google Scholar 

  15. Pimenta, R.M.L.C.A., Mendes, M.L., Pereira, G.: Fluids in electrostatic fields: An analogy for multirobot control. IEEE Transactions on Magnetics 43(4) (2007)

    Google Scholar 

  16. Leven, S., Zufferey, J.-C., Floreano, D.: Dealing with Mid-Air Collisions in Dense Collective Aerial Systems. Journal of Field Robotics 28(3), 405–423 (2011)

    Google Scholar 

  17. Lipinski, D., Mohseni, K.: Cooperative control of a team of unmanned vehicles using smoothed particle hydrodynamics. AIAA paper 2010-8316, AIAA Guidance, Navigation, and Control Conference, Toronto, Ontario, Canada, August 2-5 (2010)

    Google Scholar 

  18. Lipinski, D., Mohseni, K.: A master-slave fluid cooperative control algorithm for optimal trajectory planning. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 3347–3351. IEEE (2011)

    Google Scholar 

  19. Liu, G., Liu, M.: Smoothed particle hydrodynamics: a meshfree particle method. World Scientific (2003)

    Google Scholar 

  20. Lloyd, S.P.: Least square quantization in pcm. IEEE Transactions on Information Theory 28(2), 129–137 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  21. MacKay, D.: Information Theory, Inference and Learning Algorithms. Cambridge University Press, New York (2003)

    MATH  Google Scholar 

  22. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)

    Google Scholar 

  23. Monaghan, J.: Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrophysics 30, 543–574 (1992)

    Article  Google Scholar 

  24. Moody, J., Darken, C.J.: Fast learning in networks of locally tuned processing units. Neural Computation 1, 281–294 (1989)

    Article  Google Scholar 

  25. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Transactions on Automatic Control 51(3), 401–420 (2006)

    Article  MathSciNet  Google Scholar 

  26. Pimenta, L., Michael, N., Mesquita, R., Pereira, G., Kumar, V.: Control of swarms based on hydrodynamic models. In: IEEE International Conference on Robotics and Automation (May 2008)

    Google Scholar 

  27. Pimenta, L., Michael, N., Mesquita, R., Pereira, G., Kumar, V.: Control of swarms based on hydrodynamic models. In: IEEE International Conference on Robotics and Automation, pp. 1948–1953 (May 2008)

    Google Scholar 

  28. Pisano, W.J., Lawrence, D.A.: Autonomous UAV control using a 3-sensor autopilot. AIAA paper 2007-2756, American Institute of Aeronautics and Astronautics, Infotech Aerospace Conference, Rohnert Park, CA (May 2007)

    Google Scholar 

  29. Richards, M., Scheer, J., Holm, W.: Principles of Modern Radar Basic Principles. SciTECH Publishing Inc. (2010)

    Google Scholar 

  30. Shaw, A., Mohseni, K.: A fluid dynamic based coordination of a wireless sensor network of unmanned aerial vehicles: 3-d simulation and wireless communication characterization. IEEE Sensors Journal 11(3), 722–736 (2011)

    Google Scholar 

  31. Spiess, T., Bange, J., Buschmann, M., Vörsmann, P.: First application of the meteorological Mini UAV M2AV. Meteorologische Zeitschrift 16(2), 159–169 (2007)

    Article  Google Scholar 

  32. van den Kroonenberg, A., Martin, S., Beyrich, F., Bange, J.: Spatially-Averaged Temperature Structure Parameter Over a Heterogeneous Surface Measured by an Unmanned Aerial Vehicle. Boundary-Layer Meteorology 142, 55–77 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bobby Hodgkinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hodgkinson, B., Lipinski, D., Peng, L., Mohseni, K. (2014). High Resolution Atmospheric Sensing Using UAVs. In: Ani Hsieh, M., Chirikjian, G. (eds) Distributed Autonomous Robotic Systems. Springer Tracts in Advanced Robotics, vol 104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55146-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55146-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55145-1

  • Online ISBN: 978-3-642-55146-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics