Skip to main content

Fast Numerical Method for 2D Initial-Boundary Value Problems for the Boltzmann Equation

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8385))

  • 1319 Accesses

Abstract

We present a new numerical scheme for the initial-boundary value problem for the Boltzmann equation in two-dimensional physical space. It is based on a splitting procedure in which the collision equation is solved using the adaptive algorithm for the computation of the full three-dimensional Boltzmann collision operator on non-uniform velocity grids introduced in the previous paper by the authors. The computation of the collision operator is performed in parallel for every physical grid cell. For the two-dimensional transport equation we use a second order finite volume method. The numerical example showing the effectiveness of our method is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aristov, V.V., Tcheremisin, F.G.: The conservative splitting method for the solution of a Boltzmann equation. Zh. Vychisl. Mat. i Mat. Fiz. 20(1), 191–207, 262 (1980)

    Google Scholar 

  2. Beylkin, G.: On the fast fourier transform of functions with singularities. Appl. Comput. Harmon. Anal. 2(4), 363–381 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bird, G.A.: Molecular gas dynamics and the direct simulation of gas flows. Oxford Engineering Science Series, vol. 42. Clarendon Press, Oxford (1994)

    Google Scholar 

  4. Bird, G.A.: Recent advances and current challenges for DSMC. Comput. Math. Appl. 35(1–2), 1–14 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bobylev, A., Rjasanow, S.: Difference scheme for the Boltzmann equation based on the fast fourier transform. Eur. J. Mech. B Fluids 16(2), 293–306 (1997)

    MATH  MathSciNet  Google Scholar 

  6. Bobylev, A.V., Rjasanow, S.: Fast deterministic method of solving the Boltzmann equation for hard spheres. Eur. J. Mech. B Fluids 18(5), 869–887 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Buet, C.: A discrete-velocity scheme for the Boltzmann operator of rarefied gas dynamics. Transp. Theory Statist. Phys. 25(1), 33–60 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cercignani, C.: The Boltzmann equation and its applications. Applied Mathematical Sciences, vol. 67. Springer, New York (1988)

    MATH  Google Scholar 

  9. Filbet, F., Mouhot, C., Pareschi, L.: Solving the Boltzmann equation in \(N\log _2N\). SIAM J. Sci. Comput. 28(3), 1029–1053 (2006). (electronic), http://dx.doi.org/10.1137/050625175

    Article  MATH  MathSciNet  Google Scholar 

  10. Filbet, F., Russo, G.: High order numerical methods for the space non-homogeneous Boltzmann equation. J. Comput. Phys. 186(2), 457–480 (2003). http://dx.doi.org/10.1016/S0021-9991(03)00065–2

    Article  MATH  MathSciNet  Google Scholar 

  11. Filbet, F., Russo, G.: Accurate numerical methods for the Boltzmann equation. In: Modeling and Computational Methods for Kinetic Equations. Model. Simul. Sci. Eng. Technol., pp. 117–145. Birkhäuser, Boston (2004)

    Chapter  Google Scholar 

  12. Goldstein, D., Sturtevant, B., Broadwell, J.: Investigation of the motion of discrete-velocity gases. In: Muntz, E.P., et al. (eds.) Proceedings of the 16th International Symposium on RGD. Progress in Astronautics and Aeronautics, vol. 118, pp. 100–117 (1989)

    Google Scholar 

  13. Heintz, A., Kowalczyk, P., Grzhibovskis, R.: Fast numerical method for the Boltzmann equation on non-uniform grids. J. Comput. Phys. 227(13), 6681–6695 (2008). http://dx.doi.org/10.1016/j.jcp.2008.03.028

    Article  MATH  MathSciNet  Google Scholar 

  14. Hirsch, C.: Numerical Computation of Internal and External Flows. Wiley, New York (1991)

    Google Scholar 

  15. Kosuge, S., Aoki, K., Takata, S.: Shock-wave structure for a binary gas mixture: finite-difference analysis of the Boltzmann equation for hard-sphere molecules. Eur. J. Mech. B Fluids 20(1), 87–101 (2001)

    Article  MATH  Google Scholar 

  16. Mouhot, C., Pareschi, L.: Fast algorithms for computing the Boltzmann collision operator. Math. Comp. 75(256), 1833–1852 (2006). (electronic). http://dx.doi.org/10.1090/S0025-5718-06-01874-6

    Article  MATH  MathSciNet  Google Scholar 

  17. Nanbu, K.: Stochastic solution method of the master equation and the model Boltzmann equation. J. Phys. Soc. Japan 52(8), 2654–2658 (1983)

    Article  MathSciNet  Google Scholar 

  18. Ohwada, T.: Structure of normal shock waves: direct numerical analysis of the Boltzmann equation for hard-sphere molecules. Phys. Fluids A 5(1), 217–234 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  19. Panferov, V.A., Heintz, A.G.: A new consistent discrete-velocity model for the Boltzmann equation. Math. Meth. Appl. Sci. 25(7), 571–593 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pareschi, L., Perthame, B.: A Fourier spectral method for homogeneous Boltzmann equations. In: Proceedings of the Second International Workshop on Nonlinear Kinetic Theories and Mathematical Aspects of Hyperbolic Systems (San Remo, 1994), vol. 25, pp. 369–382 (1996)

    Google Scholar 

  21. Pareschi, L., Russo, G.: Numerical solution of the Boltzmann equation. I. Spectrally accurate approximation of the collision operator. SIAM J. Numer. Anal. 37(4), 1217–1245 (2000). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rjasanow, S., Wagner, W.: Stochastic numerics for the Boltzmann equation. Springer Series in Computational Mathematics, vol. 37. Springer, Berlin (2005)

    MATH  Google Scholar 

  23. Rogier, F., Schneider, J.: A direct method for solving the Boltzmann equation. Transp. Theory Statist. Phys. 23(1–3), 313–338 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Kowalczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heintz, A., Kowalczyk, P. (2014). Fast Numerical Method for 2D Initial-Boundary Value Problems for the Boltzmann Equation. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2013. Lecture Notes in Computer Science(), vol 8385. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55195-6_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55195-6_47

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55194-9

  • Online ISBN: 978-3-642-55195-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics