Skip to main content

Heterogeneities, The Mesoscale and Multifunctional Materials Codesign: Insights and Challenges

  • Chapter
  • First Online:
Mesoscopic Phenomena in Multifunctional Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 198))

  • 1425 Accesses

Abstract

Predicting materials performance, as well as designing and discovering new multifunctional and structural materials, demand a greater understanding of how heterogeneities and novel properties emerge at the mesoscale. Similarly, advances in computation and temporal and spatially resolved in situ measurements at light sources delivering coherent X-rays using XFELs, will allow us to probe the underlying physics of collective behavior. We review broadly some of the outstanding challenges that lay ahead in bringing together theory, experiments and computation in understanding and designing multifunctional and structural materials. Exascale computation and the development of innovative information theoretic tools, within the paradigm of codesign, promise exciting developments as we bridge the gap in our understanding of the mesoscale under extreme conditions and learn to design materials with targeted properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. A. Krumhansl, Viewpoints on micorscopic and mesoscopic transformation processes in martensite. J. de Physique IV, 5, Coll. C2, C2-3:14 (1995)

    Google Scholar 

  2. A.R. Bishop, K.O. Rasmussen, J. Roder, T. Lookman, A. Saxena, A. Vanosi, P. Kevrekidis, in Complexity at the Mesoscale, in Nonlinearity and Disorder: Theory and Applications. eds. by F. Abdullaev et al. (Kluwer, Norwell, 2001), pp. 99–113

    Google Scholar 

  3. G.W. Crabtree, J.L. Sarrao, Opportunities for mesoscale science. MRS Bull. 37, 1079–1088 (2012)

    Article  Google Scholar 

  4. J.P. Marangos, Introduction to the new science with X-ray free electron lasers. Contemp. Phys. 52(6), 551–569

    Google Scholar 

  5. R.F. Service, Materials scientists look to a data-intensive future. Science 23, 1434–1435 (2012)

    Google Scholar 

  6. G. Levesque, P. Vitello, W.M. Howard, Hot spot contributions in shocked high explosives from mesoscale ignition. J. Appl. Phys. 113, 233513 (2013)

    Article  Google Scholar 

  7. M. Ahart et al., Origin of morphotropic phase boundaries in ferrolectrics. Nature 451, 545–548 (2008)

    Article  Google Scholar 

  8. M. Myers et al., Shear localization in dynamic deformation of materials: microstructural evolution and self-organization. Mat. Sci. Eng. A 317, 204–225 (2001)

    Article  Google Scholar 

  9. G. Yu et al., Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789 (1995)

    Article  Google Scholar 

  10. N. Mathur, P.B. Littlewood, Mesoscopic textures in Manganites. Phys Today, 56, 25–30 (2003)

    Google Scholar 

  11. K. Trachenko, V.V. Brazhkin, O. Tsiok, M.T. Dove, E. Salje, Pressure-induced transformation in radiation-amorphized zircon. Phys. Rev. Lett. 98, 135502 (2007)

    Article  Google Scholar 

  12. P. Schiffer, A.P. Ramirez, W. Bao, S.W. Cheong, Phys. Rev. Lett. 75, 3336 (1995)

    Article  Google Scholar 

  13. W. Liu, X. Ren, Large piezoelectric effect in Pb-Free ceramics. Phys. Rev. Lett. 103, 257602 (2009)

    Article  Google Scholar 

  14. L. Berthier, J. Kurchan, Non-equilibrium glass transitions in driven and active matter. Nat. Phys. 9, 310–314 (2013)

    Article  Google Scholar 

  15. M. Faulkner et al., The next big one: detecting earthquakes and other rare events from community-based sensors, information processing in sensor networks (IPSN), 10th International Conference, IEEE, Chicago, USA, 2011

    Google Scholar 

  16. M. Schroder et al., Crackling noise in fractional percolation. Nat. Commun. 4, 1–6 (2013)

    Google Scholar 

  17. I. Regev, T. Lookman, C. Reichardt, Phys. Rev. E 88, 062401 (2013)

    Article  Google Scholar 

  18. National Research Council (U.S.) (2008) The potential impact of high-end capability computing on four illustrative fields of science and engineering. The National Academies. p. 11. ISBN 978-0-309-12485-0

    Google Scholar 

  19. MaRIE: Matter-radiation interactions in extremes, LANL facility future, Vistas, LALP-10-059; MaRIE Theory, Modeling and Computation Roadmap: the Materials World beyond Bloch and Boltzmann, LA-UR-10-03507 (2010)

    Google Scholar 

  20. G. De Michelii, Computer-aided hardware-software Codesign, IEE Micro (Stanford University), http://icwww.epfl.ch/~demichel/publications/archive/1994/IEEEMICROvol14iss4Aug94pg10.pdf

  21. ExMatEx, Extreme materials at extreme scale, http://www.exmatex.org/

  22. T. Lookman, J. Theiler, J.E. Gubernatis, K. Barros, E. Ben_Naim, S. Chowdhury, Q. Jia, R. Prasankumar, LANL, LDRD-DR proposal, Information-driven approach to materials discovery and design, Project # 20140013DR

    Google Scholar 

  23. R. Armiento, B. Kozinsky, M. Fornari, G. Ceder, Screening for high-performance piezoelectrics using high-throughput density functional theory. Phys. Rev. B 84, 04103–04115 (2011)

    Article  Google Scholar 

  24. P.V. Balachandran, S.R. Broderick, K. Rajan, Identifying the ‘inorganic gene’ for high-temperature piezoelectric perovskites through statistical learning. Proc. R. Soc. A 467, 2271–2290 (2011)

    Article  Google Scholar 

  25. L.A. Dalton, E.R. Dougherty, Bayesian minimum mean-square error estimation for classification error–Part I: Definition and the Bayesian MMSE error estimator for discrete classification. IEEE Trans. Signal Process. 59(1), 115–129 (2011)

    Article  Google Scholar 

  26. B. Scholkopf, A.J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (MIT Press, Cambridge, 2002)

    Google Scholar 

  27. E.R. Dougherty, A. Zollanvari, U.M. Braga-Neto, The illusion of distribution-free small-sample classification in genomics. Curr. Genomics 12, 333–341, (2011)

    Google Scholar 

  28. W.B. Powell, P. Frazier, Optimal Learning, Tutorials in Operational Research, INFORMS (2008)

    Google Scholar 

  29. W.B. Powell, The knowledge gradient for optimal learning. Encyclopedia for Operations Research and Management Science (Wiley, New York, 2011)

    Google Scholar 

  30. D. Milathianaki et al., Femtosecond visualization of lattice dynamics in shock-compressed matter. Science 342, 220–223 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This perspective represents a synthesis of ideas that have evolved in the course of my efforts related to the LANL signature facility concept, MaRIE (Matter Radiation in Extremes), the ExMatEx (Exascale Materials in Extremes) Codesign Center, as well as the materials informatics initiative at LANL. I am grateful to many colleagues over the last 2–6 years connected directly and indirectly with these programs for numerous discussions. In particular, I thank Avadh Saxena, Alan Bishop, John Sarrao, Frank Alexander, John Wills, Jack Shlachter, Frank Addessio, Curt Bronkhorst, Tim Germann, Ed Kober, Toby Shearman, Kip Barros, Jim Gubernatis, James Theiler, Eli Ben-Naim, Ed Dougherty and Krishna Rajan for many stimulating insights.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turab Lookman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lookman, T. (2014). Heterogeneities, The Mesoscale and Multifunctional Materials Codesign: Insights and Challenges. In: Saxena, A., Planes, A. (eds) Mesoscopic Phenomena in Multifunctional Materials. Springer Series in Materials Science, vol 198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55375-2_3

Download citation

Publish with us

Policies and ethics