Skip to main content

Phytoplankton and Their Role in Primary, New, and Export Production

  • Chapter
Ocean Biogeochemistry

Part of the book series: Global Change — The IGBP Series (closed) ((GLOBALCHANGE))

Abstract

Phytoplankton have played key roles in shaping Earth's biogeochemistry and contemporary human economy, yet because the human experience is so closely tied to higher plants as sources of food, fiber, and fuel, the role of phytoplankton in our everyday lives is often over-looked. The most familiar phytoplankton products we consume are petroleum and natural gas. Their uses as fuels, and in its myriad refined forms, as plastics, dyes, and chemical feedstocks are so critical to the industrialized world that wars are fought over the ownership of these fossilized hydrocarbons. Since the beginning of civilization, we have used the remains of calcareous nanoplankton, deposited over millions of years in ancient ocean basins, for building materials. Diatomaceous oozes are mined as additives for reflective paints, polishing materials, abrasives, and for insulation. Phytoplankton provided the original source of oxygen for our planet, without which our very existence would not have been possible. The fossil organic carbon, skeletal remains, and oxygen are the cumulative remains of phytoplankton export production that has occurred uninterrupted for over 3 billion years in the upper ocean (Falkowski et al. 1998). In this chapter we examine what we learned during the JGOFS era about how phytoplankton impact contemporary biogeochemical cycles and their role in shaping Earth's geochemical history.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen CB, Kanda J, Laws EA (1996) New production and photosynthetic rates within and outside a cyclonic mesoscale eddy in the North Pacific subtropical gyre. Deep-Sea Res 43:917–936

    Google Scholar 

  • Antoine D, Andre JM, Morel A (1996) Oceanic primary production 2. Estimation at global-scale from satellite (coastal zone color scanner) chlorophyll. Global Biogeochem Cy 10:57–69

    Google Scholar 

  • Asper VL, Smith WO (1999) Particle fluxes during austral spring and summer in the southern Ross Sea (Antarctica). J Geophys Res 104:5345–5360

    Google Scholar 

  • Aufdenkampe AK, McCarthy JJ, Rodier M, Navarette C, Dunne J, Murray JW (2001) Estimation of new production in the tropical Pacific. Global Biogeochem Cy 15:101–112

    Google Scholar 

  • Azam F (1998) Microbial control of oceanic carbon flux: the plot thickens. Science 280:694–696

    Google Scholar 

  • Bacon MP, Cochran JK, Hirschberg D, Hammer TR, Fleer AP (1996) Export flux of carbon at the equator during the EqPac time series cruises estimated from 234Th measurements. Deep-Sea Res Pt II 43:1133–1154

    Google Scholar 

  • Barber RT, Sanderson MP, Lindley ST, Chai F, Newton J, Trees CC, Foley DG, Chavez FP (1996) Primary productivity and its regulation in the equatorial Pacific during and following the 1991–92 El Niño. Deep-Sea Res Pt II 43:933–969

    Google Scholar 

  • Barber RT, Marra J, Bidigare RC, Codispoti LA, Halpern D, Johnson Z, Latasa M, Goericke R, Smith SL (2001) Primary productivity and its regulation in the Arabian Sea during 1995. Deep-Sea Res Pt II 48:1127–1172

    Google Scholar 

  • Behrenfeld M, Falkowski P (1997a) A consumer's guide to phytoplankton productivity models. Limnol Oceanogr 42:1479–1491

    Google Scholar 

  • Behrenfeld MJ, Falkowski PG (1997b) Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol Oceanogr 42:1–20

    Google Scholar 

  • Behrenfeld M, Bale A, Kolber Z, Aiken J, Falkowski P (1996) Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific. Nature 383:508–511

    Google Scholar 

  • Bender M, Ducklow H, Kiddon J, Marra J, Martin J (1992) The carbon balance during the 1989 spring bloom in the North Atlantic Ocean, 47°N, 20°W. Deep-Sea Res 39:1707–1725

    Google Scholar 

  • Bender ML, Orchardo J, Dickson M-L, Barber R, Lindley S (1999) In vitro O2 fluxes compared with 14C production and other rate terms during the JGOFS Equatorial Pacific experiment. Deep-Sea Res Pt II 46:637–654

    Google Scholar 

  • Benitez-Nelson C, Buessler KO, Karl DM, Andrews J (2001) A times-series study of particulate matter export in the North Pacific subtropical gyre based on 234Th and 238U disequilibrium. Deep-Sea Res Pt I 48:2595–2611

    Google Scholar 

  • Berger WH, Fisher K, Lai C, Wu G (1987) Oceanic productivity and organic carbon flux. Scripps Institute of Oceanography Reference 87(30):1–67

    Google Scholar 

  • Blankenship RE (1992) Origin and early evolution of photosynthesis. Photosynth Res 33:91–111

    Google Scholar 

  • Bronk DA, Gilbert PM, Ward BB (1994) Nitrogen uptake, dissolved organic nitrogen release and new production. Science 265:1843–1846

    Google Scholar 

  • Bruland KW, Coale KH (1986) Surface water 234Th:238U disequilibria: spatial and temporal variations of scavening rates within the Pacific Ocean. In: Burton JD, Brewer PG, Chesselet R (eds) Dynmanic processes in the chemistry of the upper ocean. Plenum, New York, pp 159–172

    Google Scholar 

  • Buesseler KO (1991) Do upper-ocean sediment trap studies prive an accurate estimate of sediment trap flux? Nature 353:420–423

    Google Scholar 

  • Buesseler KO, Bacon MP, Cochran JK, Livingston HD (1992) Carbon and nitrogen export during the JGOFS North Atlantic bloom experiment estimated from 234Th:238U disequilibria. Deep-Sea Res 39:1115–1137

    Google Scholar 

  • Buesseler KO, Michaels AF, Siegel DA, Knap AH (1994) A three-dimensional time-dependent approach to calibrating sediment trap fluxes. Global Biogeochem Cy 8:179–193

    Google Scholar 

  • Beussler KO, Andrews JE, Hartman MC, Belastock R, Chai F (1995) Regional estimates of the export flux of particulate organic carbon derived from thorium-234 during the JGOFD EQPAC program. Deep-Sea Res Pt II 42:777–804

    Google Scholar 

  • Buesseler KO, Steinberg DK, Michaels AF, Johnson RJ, Andrews JE, Valdes JR, Price JF (2000) A comparison of the quantity and composition of material caught in a neutrally buoyant versus surface-tethered sediment trap. Deep-Sea Res Pt I 47:277–294

    Google Scholar 

  • Bury SJ, Owens NJP, Preston T (1995) 13C and 15N uptake by phyto-plankton in the marginal ice zone of the Bellingshausen Sea. Deep-Sea Res Pt II 42:1225–1252

    Google Scholar 

  • Carpenter EJ, Lively JS (1980) Review of estimates of algal growth using 14C tracer techniques. In: Falkowski PG (ed) Primary productivity in the sea. Plenum Press, New York, pp 161–178

    Google Scholar 

  • Chavez FP, Barber RT (1987) An estimate of new production in the equatorial Pacific. Deep-Sea Res 34:1229–1243

    Google Scholar 

  • Chavez FP, Toggweiler JR (1995) Physical estimates of global new production: the upwelling contribution. In: Summerhayes CP et al. (eds) Upwelling in the ocean: modern processes and ancient records. John Wiley & Sons, Chichester, pp 313–320

    Google Scholar 

  • Clegg SL, Whitfield M (1990) A generalized model for the scavenging of trace metals in the open ocean, I. Particle cycling. Deep-Sea Res 38:91–120

    Google Scholar 

  • Coale KH, Bruland KW (1985) 234Th:238U disequilibria within the California current. Limnol Oceanogr 30:22–33

    Google Scholar 

  • Coale KH, Bruland KW (1987) Oceanic stratified euphotic zone as elucidated by 234Th:238U disequilibria. Limnol Oceanogr 32: 189–200

    Google Scholar 

  • Cochran JK, Bueseler KO, Bacon MP, Wang HW, Hirschberg DJ, Ball L, Andrews J, Crossin G, Fleer A (2000) Short-lived isotopes (234Th, 228Th) as indicators of POC export and particle cycling in the Ross Sea, Southern Ocean. Deep-Sea Res Pt II 47:3451–3490

    Google Scholar 

  • Daly KL, Wallace DWR, Smith WO Jr., Skoog A, Lara R, Gosselin M, Falck E, Yager PL (1999) Non-Redfield carbon and nitrogen cycling in the Arctic: effects of ecosystem structure and dynamics. J Geophys Res 104:3158–3199

    Google Scholar 

  • Delwiche C (2000) Tracing the thread of plastid diversity through the tapestry of life. Am Nat 154:164–177

    Google Scholar 

  • Doney SC, Bullister JL (1992) A chlorofluorocarbon section in the eastern North Atlantic. Deep-Sea Res 39:1857–1883

    Google Scholar 

  • Dore JE, Karl DM (1996) Nitrification in the euphotic zone as a source for nitrite, nitrate, and nitrous oxide at Station ALOHA. Limnol Oceanogr 41:1619–1628

    Google Scholar 

  • Downs J (1989) Export of production in oceanic systems: information from phaeopigment carbon and nitrogen analyses. PhD Dissertation, University of Washington, Seattle

    Google Scholar 

  • Dugdale RC, Goering JJ (1967) Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol Oceanogr 12:196–206

    Google Scholar 

  • Dugdale RC, Wilkerson FP, Barber RT, Chavez FP (1992) Estimating new production in the equatorial Pacific Ocean at 150° W. J Geophys Res 97:681–686

    Google Scholar 

  • Dunne JP, Murray JW (1999) Sensitivity of 234Th export to physical processes in the equatorial Pacific. Deep-Sea Res Pt I 46:831–854

    Google Scholar 

  • Dunne JP, Murray JW, Young J, Balistrieri LS, Bishop J (1997) 234Th and particle cycling in the central equatorial Pacific. Deep-Sea Res Pt II 44:2049–2084

    Google Scholar 

  • Dunne JP, Murray JW, Aufdenkampe A, Blain S, Rodier M (1999) Silica: nitrogen coupling in the equatorial Pacific upwelling zone. Global Biogeochem Cy 13:715–726

    Google Scholar 

  • Emerson S (1987) Seasonal oxygen cycles and biological new production in surface waters of the subarctic Pacific Ocean. J Geophys Res 100:15873–15887

    Google Scholar 

  • Emerson S, Quay PD, Stump C, Wilber D, Knox M (1991) O2, Ar, N2 and 222Rn in surface waters of the subarctic ocean: net biological O2 production. Global Biogeochem Cy 5:49–60

    Google Scholar 

  • Emerson S, Quay P, Wheeler PA (1993) Biological productivity determined from oxygen mass balance and incubation experiments. Deep-Sea Res 40:2351–2358

    Google Scholar 

  • Emerson S, Quay PD, Stump C, Wilber D, Schudlich R (1995) Chemical tracers of productivity and respiration in the subtropical Pacific Ocean. J Geophys Res 100:15873–15887

    Google Scholar 

  • Emerson S, Quay P, Karl D, Winn C, Tupas L, Landry M (1997) Experimental determination of the organic carbon flux from open-ocean surface waters. Nature 389:951–954

    Google Scholar 

  • Emerson S, Mecking S, Abell J (2002) The biological pump in the North Pacific Ocean: nutrient sources, Redfield ratios and recent changes. Global Biogeochem Cy 15:535–554

    Google Scholar 

  • Eppley RW (1989) New production: history, methods, problems. In: Berger WH, Smetacek VS, Wefer G (eds) Productivity of the ocean: present and past. John Wiley & Sons, New York, pp 85–97

    Google Scholar 

  • Eppley RW, Peterson BJ (1979) Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282:677–680

    Google Scholar 

  • Eppley RW, Renger EH, Betzer RR (1983) The residence time of particulate organic carbon in the surface layer of the ocean. Deep-Sea Res 30:311–323

    Google Scholar 

  • Esaias WE (1980) Remote sensing of oceanic phytoplankton: present capabilities and future goals. In: Falkowski PG (ed) Primary productivity in the sea. Plenum Press, New York, pp 321–337

    Google Scholar 

  • Falkowski PG, Raven JA (1997) Aquatic photosynthesis. Blackwell Scientific Publishers, Oxford, 375 pp

    Google Scholar 

  • Falkowski PG, Woodhead AD (1992) Primary productivity and biogeochemical cycles in the sea. Plenum Press, New York, 550 pp

    Google Scholar 

  • Falkowski PG, Wyman K, Ley AC, Mauzerall D (1986) Relationship of steady state photosynthesis to fluorescence in eucaryotic algae. Biochim Biophys Acta 849:183–192

    Google Scholar 

  • Falkowski PG, Ziemann D, Kolber Z, Bienfang PK (1991) Role of eddy pumping in enhancing primary production in the ocean. Nature 352:55–58

    Google Scholar 

  • Falkowski P, Barber R, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary productivity. Science 281:200–206

    Google Scholar 

  • Field C, Behrenfeld M, Randerson J, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    Google Scholar 

  • Fitzwater SE, Knauer GA, Martin JH (1982) Metal contamination and its effects on primary production measurements. Limnol Oceanogr 27:544–551

    Google Scholar 

  • Garside C (1985) The vertical distribution of nitrate in open ocean surface water. Deep-Sea Res 32:723–732

    Google Scholar 

  • Gilbert PM, McCarthy JJ (1984) Uptake and assimilation of ammonium and nitrate by phytoplankton: Indices of nutritional status for natural assemblages. J Plankton Res 6:677–697

    Google Scholar 

  • Gran H (1918) Kulturforok med planktonalger, Fordhandlinger Skand. Naturforskeres 16 de mo Kristiana (1916), 391 pp

    Google Scholar 

  • Grande KD, Williams PJL, Marra J, Purdie DA, Heinemann K, Eppley RW, Bender ML (1989) Primary production in the North Pacific Gyre: a comparison of rates determined by the 14C, O2 concentration and 18O methods. Deep-Sea Res 36:1621–1634

    Google Scholar 

  • Gust G, Byrne RH, Bernstein RE, Betzer PR, Bowles W (1992) Particle fluxes and moving fluids: experience from synchronous trap collections in the Sargasso Sea. Deep-Sea Res Pt I 41:831–857

    Google Scholar 

  • Harrison WG, Piatt T, Lewis MR (1987) f-ratio and its relationship to ambient nitrate concentration in coastal waters. J Plankton Res 9:235–248

    Google Scholar 

  • Hayward TL, Venrick EL (1982) Relation between surface chlorophyll, integrated chlorophyll and integrated primary production. Mar Biol 69:247–252

    Google Scholar 

  • Hedges JI, Baldock JA, Gelinas Y, Lee C, Peterson ML, Wakeham SG (2002) The biochemical and elemental composition of marine plankton: a NMR perspective. Mar Chem 78:47–63

    Google Scholar 

  • Hernes PJ, Peterson ML, Murray JW, Wakeham SG, Lee C, Hedges JI (2001) Particulate carbon and nitrogen fluxes and compositions in the central equatorial Pacific. Deep-Sea Res Pt I 48: 1999–2023

    Google Scholar 

  • Honeyman BD, Santschi PH (1989) A Brownian-pumping model for oceanic trace metal scavenging: Evidence from Th isotopes. J Mar Res 47:951–992

    Google Scholar 

  • Honjo SjDoherty KW (1988) Large aperture time-series sediment traps: design objectives, construction and application. Deep-Sea Res 35:133–149

    Google Scholar 

  • Jenkins WJ (1982) Oxygen utilization rates in the north Atlantic Subtropical Gyre and primary production in oligotrophic systems. Nature 300:246–248

    Google Scholar 

  • Jenkins WJ, Goldman J (1985) Seasonal oxygen cycling and primary production in the Sargasso Sea. J Mar Res 43:465–491

    Google Scholar 

  • Karl DM, Christian JR, Dore JE, Hebel DV, Letelier RM, Tupas LM, Winn CD (1996) Seasonal and interannual variability in primary production and particle flux at station ALOHA. Deep-Sea Res Pt II 43:539–568

    Google Scholar 

  • Karl DM, Letelier R, Tupas L, Dore J, Christian J, Hebel D (1997) The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature 388:533–538

    Google Scholar 

  • Knauer GA, Martin JH, Bruland KW (1979) Fluxes of particulate carbon, nitrogen and phosphorus in the upper water column of the northeast Pacific. Deep-Sea Res 26:97–108

    Google Scholar 

  • Koblentz-Mishke OJ, Volkovinsky VV, Kabanova JG (1970) Plankton primary production of the world ocean. In: Wooster WS (ed) Scientific exploration of the South Pacific. U.S. National Academy of Science, Washington, pp 183–193

    Google Scholar 

  • Kolber Z, Falkowski PG (1993) Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol Oceanogr 38:1646–1665

    Google Scholar 

  • Kolber Z, Wyman KD, Falkowski PG (1990) Natural variability in photosynthetic energy conversion efficiency: a field study in the Gulf of Maine. Limnol Oceanogr 35:72–79

    Google Scholar 

  • Kurz KD, Maier-Reimer E (1993) Iron fertilization of the Austral Ocean: the Hamburg model assessment. Global Biogeochem Cy 7:229–244

    Google Scholar 

  • Landry MR, Barber RT, Bidigare R, Chai F, Coale KH, Dam HG, Lewis MR, Lindley ST, McCarthy JJ, Roman MR, Stoecker DK, Verity PG, White JR (1997) Iron and grazing constraints on primary production in the central equatorial Pacific: an EqPac synthesis. Limnol Oceanogr 42:405–418

    Google Scholar 

  • Laws EA, DiTullio GR, Betzer PR, Karl DM, Carder KL (1989) Autotrophic production and elemental fluxes at 26° N, 155° W in the North Pacific subtropical gyre. Deep-Sea Res 36:103–120

    Google Scholar 

  • Laws EA, Falkowski PG, Smith WO, Ducklow H, McCarthy JJ (2000) Temperature effects on export production in the open ocean. Global Biogeochem Cy 14:1231–1246

    Google Scholar 

  • Laws EA, Sakshaug E, Babin M, Dandonneau Y, Falkowski P, Gelder R, Legendre L, Morel A, Sondergaard M, Takahashi M, Williams PJ leB (2002) Photosynthesis and primary productivity in marine ecosystems: practical aspects and application of techniques. JGOFS special publication (in press)

    Google Scholar 

  • Lee K (2001) Global net community production estimated from the annual cycle of surface water total dissolved inorganic carbon. Limnol Oceanogr 46:1287–1297

    Google Scholar 

  • Letelier RM, Karl DM (1996) Role of Trichodesmium spp. in the productivity of the subtropical North Pacific Ocean. Mar Ecol Prog Ser 133:263–273

    Google Scholar 

  • Li Y-H, Peng T-H (2002) Latitudinal change of remineralization ratios in the oceans and its implications for nutrient cycles. Global Biogeochem Cy (in press)

    Google Scholar 

  • Lindeman R (1942) The trophic-dynamic aspect of ecology. Ecology 23:399–418

    Google Scholar 

  • Lipps JH (1993) Fossil prokaryotes and protists. Blackwell, Oxford, 342 pp

    Google Scholar 

  • Liss PS, Merlivat L (1986) Air-sea gas exchange rates: Introduction and synthesis. In: Buat-Menard P (ed) The role of air-sea exchange in geochemical cycling. D. Reidel, Hingham, Ma, pp 113–129

    Google Scholar 

  • Liu KK, Atkinson L, Chen CTA, Gao S, Hall J, Macdonald RW, Talaue McManus L, Quinones R (2000) Exploring continental margin carbon fluxes on a global scale. EOS 81:641–644

    Google Scholar 

  • Longhurst A, Sathyendranath S, Piatt T, Caverhill C (1995) An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res 17:01245–01271

    Google Scholar 

  • Longhurst AR, Bedo AW, Harrison WG, Head EJH, Sameoto DD (1990) Vertical flux of respiratory carbon by oceanic diel migrant biota. Deep-Sea Res 37:685–694

    Google Scholar 

  • Martin JH, Knauer GA, Karl DM, Broenkow WW (1987) VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res 32:267–286

    Google Scholar 

  • McCarthy JJ, Garside C, Nevins JL, Barber RT (1996) New production along 140° W in the equatorial Pacific during and following the 1992 El Niño event. Deep-Sea Res Pt II 43:1065–1093

    Google Scholar 

  • McCarthy JJ, Garside C, Nevins JL (1999) Nitrogen dynamics during the Arabian Sea northeast monsoon. Deep-Sea Res Pt II 46:1623–1664

    Google Scholar 

  • McGillicuddy DJ Jr., McCarthy JJ, Robinson AR (1995) Coupled physical and biological modeling of the spring bloom in the North Atlantic (I): model formulation and one imensional bloom processes. Deep-Sea Res Pt I 42:1313–1357

    Google Scholar 

  • Michaels AF, Bates NR, Buesseler KO, Carlson CA, Knap AH (1994) Carbon-cycle imbalances in the Sargasso Sea. Nature 372: 537–540

    Google Scholar 

  • Min D-H, Bullister JL, Weiss RF (2000) Constant ventilation age of thermocline water in the eastern subtropical North Pacific Ocean from chlorofluorocarbon measurements over a 12-year period. Geophys Res Lett 27:3909–3912

    Google Scholar 

  • Murray JW, Downs JN, Strom S, Wei C-L, Jannasch HW (1989) Nutrient assimilation, export production and 234Th scavenging in the eastern equatorial Pacific. Deep-Sea Res 36: 1471–1489

    Google Scholar 

  • Murray JW, Young J, Newton J, Dunne J, Chapin T, Paul B (1996) Export flux of particulate organic carbon from the central Equatorial Pacific using a combined drifting trap — 234Th approach. Deep-Sea Res Pt II 43:1095–1132

    Google Scholar 

  • Peterson ML, Hernes PJ, Thoreson DS, Hedges JI, Lee C, Wakeham SG (1993) Field evaluation of a valved sediment trap. Limnol Oceanogr 38:1741–1761

    Google Scholar 

  • Platt T, Denman KL, Jassby AD (1975) The mathematical representation and prediction of phytoplankton productivity. Fisheries and Marine Services Technical Report 523

    Google Scholar 

  • Redfield AC (1934) On the proportions of organic derivatives in sea water and their relation to the composition of plankton. James Johnstone Memorial Volume, Liverpool, 176 pp

    Google Scholar 

  • Riley GA (1951) Oxygen, phosphate and nitrate in the Atlantic Ocean. Bulletin Bingham Oceanographie College 13:1–126

    Google Scholar 

  • Ryther JH (1969) Photosynthesis and fish production in the sea. Science 166:72–77

    Google Scholar 

  • Sambrotto RN, Lorenzen CJ (1987) Phytoplankton, phytoplankton production in the coastal, oceanic areas of the Gulf of Alaska. In: Hood DW, Zimerman ST (eds) The Gulf of Alaska: physical environment, biological resources. U.S. Department of Commerce, Washington, D.C., pp 249–282

    Google Scholar 

  • Sambrotto RN, Savidge G, Robinson C, Boyd P, Takahashi T, Karl DM, Langdon C, Chipman D, Marra J, Codispoti L (1993) Elevated consumption of carbon relative to nitrogen in the surface ocean. Nature 363:248–250

    Google Scholar 

  • Sanderson MP, Hunter CN, Fitzwater SE, Gordon RM, Barber RT (1995) Primary productivity and trace metal contamination measurements from a clean rosette system versus ultra clean Go-Flo bottles. Deep-Sea Res Pt II 42:431–440

    Google Scholar 

  • Santschi PH, Li Y-H, Bell J (1979) Natural radionuclides in the water of Narragansett Bay. Earth Planet Sc Lett 45:201–213

    Google Scholar 

  • Sarmiento JL, Armstrong RA (1997) U.S. JGOFS synthesis and modeling project implementation plan: the role of oceanic processes in the global carbon cycle. AOS Program, Princeton University, 67 pp

    Google Scholar 

  • Smith SV (1981) Marine macrophytes as a global carbon sink. Science 211:838–840

    Google Scholar 

  • Smith WO Jr. (1995) Primary productivity and new production in the Northeast Water (Greenland) Polynya during summer 1992. J Geophys Res 100:4357–4370

    Google Scholar 

  • Smith WO Jr., Gosselin M, Legendre L, Wallace D, Daly K, Kattner G (1997) New production in the Northeast Water Polynya. Journal of Marine Systems 10:199–209

    Google Scholar 

  • Smith WO Jr., Barber RT, Hiscock MR, Marra J (2000) The seasonal cycle of phytoplankton biomass and primary productivity in the Ross Sea, Antarctica. Deep-Sea Res Pt II 47:3119–3140

    Google Scholar 

  • Spitzer WS, Jenkins WJ (1989) Raters of vertical mixing, gas exchange and new production: estimates from seasonal gas cycles in the upper ocean near Bermuda. J Mar Res 47:169–196

    Google Scholar 

  • Steemann-Nielsen E (1952) The use of radio-active carbon (14C) for measuring organic production in the sea. Journal du Conseil International pour Exploration de la Mer 18:117–140

    Google Scholar 

  • Steinberg DK, Carlson CA, Bates NR, Goldthwait SA, Madin LP, Michaels AF (2000) Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea. Deep-Sea Res Pt I 47:137–158

    Google Scholar 

  • Summons R, Jahnke L, Hope J, Logan G (1999) 2-Methanhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:554–557

    Google Scholar 

  • Varela DE, Harrison PJ (1999) Seasonal variability in nitrogenous nutrition of phytoplankton assemblages in the northeastern subarctic Pacific Ocean. Deep-Sea Res Pt II 46:2505–2538

    Google Scholar 

  • Walker JCG (1974) Stability of atmospheric oxygen. Am J Sci 274:193–214

    Google Scholar 

  • Wanninkhof R (1992) Relationship between wind speed and gas exchange over the sea. J Geophys Res 97:7373–7382

    Google Scholar 

  • Warner MJ, Weiss RF (1992) Chlorofluoromethanes in South Atlantic intermediate water. Deep-Sea Res 39:2053–2075

    Google Scholar 

  • Warner MJ, Bullister JI, Wisegarver DP, Gammon RH, Weiss RF (1996) Basin-wide distributions of chlorocarbons CFC-11 and CFC-12 in the North Pacific: 1985–1989. J Geophys Res 101:20525–20542

    Google Scholar 

  • Welschmeyer N, Goericke R, Strom S, Peterson W (1991) Phytoplankton growth and herbivory in the subarctic Pacific: A chemotaxonomic analysis. Limnol Oceanogr 36:1631–1649

    Google Scholar 

  • Wilkerson FP, Dugdale RC, Barber RT (1987) Effects of El Niño on new, regenerated, and total production in eastern boundary upwelling systems. J Geophys Res 92:14347–14353

    Google Scholar 

  • Williams RJP (1981) Natural selection of the chemical elements. P Roy Soc Lond 213:361–397

    Google Scholar 

  • Williams PJ leB (1993a) Chemical and tracer methods of measuring plankton production. ICES Marine Science Symposium 197: 20–36

    Google Scholar 

  • Williams PJ leB (1993b) On the definition of plankton production terms. ICES Marine Science Symposium 197:9–19

    Google Scholar 

  • Williams PJ leB, von Bodungen B, Bathmann U, Berger WH, Eppley RW, Feldman GC, Fischer G, Legendre L, Minster J-F, Reynolds CS, Smetacek VS, Toggweiler JR (1989) Group report: export productivity from the photic zone. In: Berger WH, Smetacek VS, Wefer G (eds) Productivity of the ocean: present and past. John Wiley & Sons, New York, pp 99–115

    Google Scholar 

  • Williams PJL, Jenkinson NW (1982) A transportable microprocessor controlled Winkler titration suitable for field and ship-board use. Limnol Oceanogr 27:576–584

    Google Scholar 

  • Wong CS, Whitney FA, Iseki K, Page JS, Zeng J (1995) Analysis of trends in primary productivity and chlorophyll a over two decades at Ocean Station P. (50° N, 145° W) in the subarctic Northeast Pacific Ocean. Can J Fish Aquat Sci 121:107–117

    Google Scholar 

  • Wong CS, Whitney FA, Matear RJ, Iseki K (1998) Enhancement of new production in the northeast subarctic Pacific Ocean during negative North Pacific index events. Limnol Oceanogr 43:1418–1426

    Google Scholar 

  • Zehr JP, Waterbury JB, Turner PJ, Montoya JP, Omoregie E, Steward GF, Hansen A, Karl DM (2001) Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature 412:635-638

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Falkowski, P.G., Laws, E.A., Barber, R.T., Murray, J.W. (2003). Phytoplankton and Their Role in Primary, New, and Export Production. In: Fasham, M.J.R. (eds) Ocean Biogeochemistry. Global Change — The IGBP Series (closed). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55844-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55844-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62691-3

  • Online ISBN: 978-3-642-55844-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics