Skip to main content

Part of the book series: Research and Perspectives in Alzheimer’s Disease ((ALZHEIMER))

  • 109 Accesses

Summary

β- and γ-secretases, the proteases responsible for liberating the amyloid-β peptide (Aβ) from its precursor protein (APP), are considered important targets for the development of therapeutics for Alzheimer’s disease (AD). γ-Secretase has not been definitively identified, but its activity is closely linked to the multitransmembrane presenilins. Evidence using transition-state analogue inhibitors, site-directed mutagenesis, and molecular modeling suggests that γ-secretase is an aspartyl protease that catalyzes an intramembranous proteolysis. Two conserved transmembrane aspartates in presenilins are each critical for γ-secretase activity, and transition-state analogue γ-secretase inhibitors bind directly to presenilins. These results strongly suggest that presenilins are novel polytopic aspartyl proteases. The presenilins are also involved in the intramembranous proteolysis of the Notch receptor, a critical signaling event during cell fate decision in embryonic development. Transition-state analogue γ-secretase inhibitors also block the intramembranous cleavage of Notch, and the transmembrane aspartates of presenilins are required for this proteolysis as well. Thus, presenilins appear to play a similar role in the intramembranous processing of APP and Notch, raising concerns that toxic effects might result from chronic inhibition Notch signaling. We recently established in vitro γ-secretase assays using APP- and Notch-based substrates, and these assays should allow a rigorous biochemical comparison of these two related proteolytic processes. We also found that γ-secretase inhibitors can induce phenotypes mimicking Notch deficiencies in Drosophila, demonstrating that targeting this protease can interfere with Notch signaling in whole organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baumeister R, Leimer U, Zweckbronner I, Jakubek C, Grunberg J, Haass C (1997) Human presenilin-1, but not familial Alzheimer’s disease (FAD) mutants, facilitate Caenorhabditis elegans Notch signalling independently of proteolytic processing. Genes Function 1:149–159.

    Article  CAS  Google Scholar 

  • Brou C, Logeat F, Gupta N, Bessia C, LeBail O, Doedens JR, Cumano A, Roux P, Black RA, Israel A (2000) A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrinmetall protease TACE. Mol Cell 5:207–216.

    Article  PubMed  CAS  Google Scholar 

  • Capell A, Grunberg J, Pesold B, Diehlmann A, Citron M, Nixon R, Beyreuther K, Selkoe DJ, Haass C (1998) The proteolytic fragments of the Alzheimer’s disease-associated presenilin-1 form heterodimers and occur as a 100–150-kDa molecular mass complex. J Biol Chem 273:3205–3211.

    Article  PubMed  CAS  Google Scholar 

  • De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G, Annaert W, Von Figura K, Van Leuven F (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391:387–390.

    Article  PubMed  Google Scholar 

  • De Strooper B, Annaert W, Cupers P, Saftig P, Craessaerts K, Mumm JS, Schroeter EH, Schrijvers V, Wolfe MS, Ray WJ, Goate A, Kopan R (1999) A presenilin-1 dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature 398:518–522.

    Article  PubMed  Google Scholar 

  • Doan A, Thinakaran G, Borchelt DR, Slunt HH, Ratovitsky T, Podlisny M, Selkoe DJ, Seeger M, Gandy SE, Price DL, Sisodia SS (1996) Protein topology of presenilin-1. Neuron 17:1023–1030.

    Article  PubMed  CAS  Google Scholar 

  • Doherty AM, Sircar L, Kornberg BE, Quin III J, Winters RT, Kaltenbronn JS, Taylor MD, Batley BL, Rapundalo SR, Ryan MJ, Painchaud CA (1992) Design and synthesis of potent, selective, and orally active fluorine-containing renin inhibitors. J Med Chem 36:2–14.

    Article  Google Scholar 

  • Donoviel DB, Hadjantonakis AK, Ikeda M, Zheng H, Hyslop PS, Bernstein A (1999) Mice lacking both presenilin genes exhibit early embryonic patterning defects. Genes Dev 13:2801–2810.

    Article  PubMed  CAS  Google Scholar 

  • Dovey HF, John V, Anderson JP, Chen LZ, deSaint Andrieu P, Fang LY, Freedman SB, Former B, Goldbach E, Holsztynska EJ, Hu KL, Johnson-Wood KL, Kennedy SL, Kholodenko D, Knops JE, Latimer LH, Lee M, Liao Z, Lieberburg IM, Motter RN, Mutter LC, Nietz J, Quinn KP, Sacchi KL, Seubert PA, Shopp GM, Thorsett ED, Tung JS, Wu J, Yang S, Yin CT, Schenk DB, May PC, Altstiel LD, Bender MH, Boggs LN, Britton TC, Clemens JC, Czilli DL, Dieckman-McGinty DK, Droste JJ, Fuson KS, Gitter BD, Hyslop PA, Johnstone EM, Li WYY, Little SP, Mabry TE, Miller FD, Audia JE (2001) Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J Neurochem 76:173–181.

    Article  PubMed  CAS  Google Scholar 

  • Esler WP, Kimberly WT, Ostaszewski BL, Diehl TS, Moore CL, Tsai JY, Rahmati T, Xia W, Selkoe DJ, Wolfe MS (2000) Transition-state analogue inhibitors of γ-secretase bind directly to presenilin-1. Nature Cell Biol 2:428–434.

    Article  PubMed  CAS  Google Scholar 

  • Flexner C (1998) HIV-protease inhibitors. N Engl J Med 338:1281–1292.

    Article  PubMed  CAS  Google Scholar 

  • Getman DP, DeCrescenzo GA, Heintz RM, Reed KL, Talley JJ, Bryant ML, Clare M, Houseman KA, Marr JJ, Mueller RA, Vazquez ML, Shieh H-S, Stallings WC, Stegeman RA (1993) Discovery of a novel class of potent HIV-1 protease inhibitors containing the (R)-(hydroxyethyl)urea isostere. J Med Chem 36:288–291.

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Livne-Bar I, Zhou L, Boulianne GL (1999) Drosophila presenilin is required for neuronal differentiation and affects notch subcellular localization and signaling. J Neurosci 19:8435–8442.

    PubMed  CAS  Google Scholar 

  • Hardy J (1997) The Alzheimer family of diseases: many etiologies, one pathogenesis?. Proc Natl Acad Sci USA 94:2095–2097.

    Article  PubMed  CAS  Google Scholar 

  • Herreman A, Hartmann D, Annaert W, Saftig P, Craessaerts K, Serneels L, Umans L, Schrijvers V, Cheder F, Vanderstichele H, Bakeland V, Dressel R, Cupers P, Huylebroeck D, Zwijsen A, Van Leuven F, De Strooper B (1999) Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. Proc Natl Acad Sci USA 96:11872–11877.

    Article  PubMed  CAS  Google Scholar 

  • Herreman A, Serneels L, Annaert W, Collen D, Schoonjans L, De Strooper B (2000) Total inactivation of gamma-secretase activity in presenilin-deficient embryonic stem cells. Nature Cell Biol 2:461–462.

    Article  PubMed  CAS  Google Scholar 

  • Huppert SS, Schroeter EH, Mumm JS, Saxena MT, Milner LA, Kopan R (2000) Embryonic lethality in mice homozygous for a processing-deficient allele of Notch 1. Nature 405:966–970. http://www.alzforum.org/members/resources/pres_mutations/index.html.

    Article  PubMed  CAS  Google Scholar 

  • James MN, Sielecki AR, Hayakawa K, Gelb MH (1992) Crystallographic analysis of transition state mimics bound to penicillopepsin: difluorostatine-and difluorostatone-containing peptides. Biochemistry 31:3872–3886.

    Article  PubMed  CAS  Google Scholar 

  • Kimberly WT, Xia W, Rahmati T, Wolfe MS, Selkoe DJ (2000) The transmembrane asparates in presenilin 1 and 2 are obligatory for γ-secretase activity and amyloid β-protein generation. J Biol Chem 275:3173–3178.

    Article  PubMed  CAS  Google Scholar 

  • Kurata S, Go MJ, Artavanis-Tsakonas S, Gehring WJ (2000) Notch signaling and the determination of appendage identity. Proc Natl Acad Sci USA 97:2117–2122.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann S, Chiesa R, Harris DA (1997) Evidence for a six-transmembrane domain structure of presenilin 1. J Biol Chem 272:12047–12051.

    Article  PubMed  CAS  Google Scholar 

  • Levγ-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, Yu CE, Jondro PD, Schmidt SD, Wang K, Crowley AC, Fu Y, Guenette SY, Galas D, Nemens E, Wijsman EM, Bird TD, Schellenberg GD, Tanzi RE (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269:973–977.

    Article  Google Scholar 

  • Li X, Greenwald I (1996) Membrane topology of the C. elegans SEL-12 presenilin. Neuron 17:1015–1021.

    Article  PubMed  CAS  Google Scholar 

  • Li X, Greenwald I (1998) Additional evidence for an eight-transmembrane-domain topology for Caenorhabditis elegans and human presenilins. Proc Natl Acad Sci USA 95:7109–7114.

    Article  PubMed  CAS  Google Scholar 

  • Li YM, Xu M, Lai M-T, Huang Q, Castro JL, DIMuzio-Mower J, Harrison T, Lellis C, Nadin A, Neduvelli JG, Register RB, Sardana MK, Shearman MS, Smith AL, Shi X-P, Yin K-C, Shafer JA, Gardell SJ (2000a) Photoactivated gamma-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 405:689–694.

    Article  PubMed  CAS  Google Scholar 

  • Li YM, Lai MT, Xu M, Huang Q, DiMuzio-Mower J, Sardana MK, Shi XP, Yin KC, Shafer JA, Gardell SJ (2000b) Presenilin 1 is linked with gamma-secretase activity in the detergent solubilized state. Proc Natl Acad Sci USA 97:6138–6143.

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler SF, Ida N, Multhaup G, Masters CL, Beyreuther K (1997) Mutations in the transmembrane domain of APP altering gamma-secretase specificity. Biochemistry 36:15396–15403.

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler SF, Wang R, Grimm H, Uljon SN, Masters CL, Beyreuther K (1999) Mechanism of the cleavage specificity of Alzheimer’s disease gamma-secretase identified by phenylalaninescanning mutagenesis of the transmembrane domain of the amyloid precursor protein. Proc Natl Acad Sci USA 96:3053–3058.

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Tomita T, Shinozaki K, Kume H, Asada H, Saido TC, Ishiura S, Iwatsubo T, Obata K (1996) Familial Alzehimer’s disease-linked mutations at Val717 of amyloid precursor protein are specific for the increased secretion of A beta 42(43). Biochem Biophys Res Commun 227:730–735.

    Article  PubMed  CAS  Google Scholar 

  • Mumm JS, Schroeter EH, Saxena MT, Griesemer A, Tian X, Pan DJ, Ray WJ, Kopan R (2000) A ligand-induced extracellular cleavage regulates-secretase-like proteolytic activation of Notchl. Mol Cell 5:197–206.

    Article  PubMed  CAS  Google Scholar 

  • Nakai T, Yamasaki M, Sakaguchi M, Kosaka K, Mihara K, Amaya Y, Miura S (1999) Membrane topology of Alzheimer’s disease-related presenilin 1. Evidence for the existence of a molecular species with a seven membrane-spanning and one membrane-embedded structure. J Biol Chem 274:23647–23658.

    Article  PubMed  CAS  Google Scholar 

  • Podlisny MB, Citron M, Amarante P, Sherrington R, Xia W, Zhang J, Diehl T, Levesque G, Fraser P, Haass C, Koo EHM, Seubert P, St. George-Hyslop P, Teplow DB, Selkoe DJ (1997) Presenilin proteins undergo heterogeneous endoproteolysis between Thr291 and Ala299 and occur as stable N-and C-terminal fragments in normal and Alzheimer brain tissue. Neurobiol Dis 3:325–337.

    Article  PubMed  CAS  Google Scholar 

  • Ratovitski T, Slunt HH, Thinakaran G, Price DL, Sisodia SS, Borchelt DR (1997) Endoproteolytic processing and stabilization of wild-type and mutant presenilin. J Biol Chem 272:24536–24541.

    Article  PubMed  CAS  Google Scholar 

  • Rogaev El, Sherrington R, Rogaeva EA, Levesque G, Okeda M, Liang Y, Chi H, Lin C, Holman K, Tsuda T, Mar L, Sorbi S, B, Piacentini S, Amaducci L, Chumakov I, Cohen D, Lannfelt L, Fraser PE, Rommens JM, St. George-Hyslop PH (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376:775–778.

    Article  PubMed  CAS  Google Scholar 

  • Schroeter EH, Kisslinger JA, Kopan R (1998) Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393:382–386.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (1999) Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature 399:A23–31.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (2000) Notch and presenilins in vertebrates and invertebrates: implications for neuronal development and degeneration. Curr Opin Neurobiol 10:50–57.

    Article  PubMed  CAS  Google Scholar 

  • Shearman MS, Beher D, Clarke EE, Lewis HD, Harrison T, Hunt P, Nadin A, Smith AL, Stevenson G, Castro JL (2000) L-685,458, an aspartyl protease transition state mimic, is a potent inhibitor of amyloid beta-protein precursor gamma-secretase activity. Biochemistry 39:8698–8704.

    Article  PubMed  CAS  Google Scholar 

  • Shen J, Bronson RT, Chen DF, Xia W, Selkoe DJ, Tonegawa S (1997) Skeletal and CNS defects in Presenilin-1-deficient mice. Cell 89:629–639.

    Article  PubMed  CAS  Google Scholar 

  • Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin J-F, Bruni AC, Montesi MP, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky RJ, Wasco W, Da Silva HAR, Haines JL, Pericak-Vance MA, Tanzi RE, Roses AD, Fraser PE, Rommens JM, St George-Hyslop PH (1995) Cloning of a gene bearing missense mutations in earlγ-onset familial Alzheimer’s disease. Nature 375:754–760.

    Article  PubMed  CAS  Google Scholar 

  • Silva AM, Cachau RE, Sham HL, Erickson JW (1996) Inhibition and catalytic mechanism of HIV-1 aspartic protease. J Mol Biol 255:321–346.

    Article  PubMed  CAS  Google Scholar 

  • Steiner H, Capell A, Pesold B, Citron M, Kloetzel PM, Selkoe DJ, Romig H, Mendia K, Haass C (1998) Expression of Alzheimer’s disease-associated presenilin-1 is controlled by proteolytic degradation and complex formation. J Biol Chem 273:32322–32331.

    Article  PubMed  CAS  Google Scholar 

  • Steiner H, Duff K, Capell A, Romig H, Grim MG, Lincoln S, Hardy J, Yu X, Picciano M, Fechteler K, Citron M, Kopan R, Pesold B, Keck S, Baader M, Tomita T, Iwatsubo T, Baumeister R, Haass C (1999a) A loss of fonction mutation of presenilin-2 interferes with amyloid beta-peptide production and notch signaling. J Biol Chem 274:28669–28673.

    Article  PubMed  CAS  Google Scholar 

  • Steiner H, Romig H, Pesold B, Philipp U, Baader M, Citron M, Loetscher H, Jacobsen H, Haass C (1999b) Amyloidogenic function of the Alzheimer’s disease-associated presenilin 1 in the absence of endoproteolysis. Biochemistry 38:14600–14605.

    Article  PubMed  CAS  Google Scholar 

  • Thaisrivongs S, Pals DT, Kati WM, Turner SR, Thomasco LM, Watt W (1986) Design and synthesis of potent and specific renin inhibitors containing difluorostatine, difluorostatone, and related analogues. J Med Chem 29:2080–2087.

    Article  PubMed  CAS  Google Scholar 

  • Thinakaran G, Borchelt DR, Lee MK, Slunt HH, Spitzer L, Kim G, Ratovitski T, Davenport F, Nordstedt C, Seeger M, Hardy J, Levey AI, Gandy SE, Jenkins N, Copeland N, Price DL, Sisodia SS (1996) Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 17:181–190.

    Article  PubMed  CAS  Google Scholar 

  • Thinakaran G, Harris CL, Ratovitski T, Davenport F, Slunt HH, Price DL, Borchelt DR, Sisodia SS (1997) Evidence that levels of presenilins (PS1 and PS2) are coordinately regulated by competition for limiting cellular factors. J Biol Chem 272:28415–28422.

    Article  PubMed  CAS  Google Scholar 

  • Thinakaran G, Regard JB, Bouton CML, Harris CL, Price DL, Borchelt DR, Sisodia SS (1998) Stable association of presenilin derivatives and absence of presenilin interactions with APP. Neurobiol Dis 4:438–453.

    Article  PubMed  CAS  Google Scholar 

  • Tischer E, Cordeil B (1996) Beta-amyloid precursor protein. Location of transmembrane domain and specificity of gamma-secretase cleavage. J Biol Chem 271:21914–21919.

    Article  PubMed  CAS  Google Scholar 

  • Veerapandian B, Cooper JB, Sali A, Blundell TL, Rosati RL, Dominy BW, Damon DB (1992) Direct observation by X-ray analysis of the tetrahedral “intermediate” of aspartic proteinases. Protein Sci 1:322–328.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe MS, Citron M, Diehl TS, Xia W, Donkor IO, Selkoe DJ (1998) A substrate-based difluoro ketone selectively inhibits Alzheimer’s γ-secretase activity. J Med Chem 41:6–9.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe MS, Xia W, Moore CL, Leatherwood DD, Ostaszewski B, Rahmati T, Donkor IO, Selkoe DJ (1999a) Peptidomimetic probes and molecular modeling suggest Alzheimer’s γ-secretases are intramembrane cleaving aspartyl proteases. Biochemistry 38:4720–4727.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe DJ (1999b) Two transmembrane asparates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature 398:513–517.

    Article  PubMed  CAS  Google Scholar 

  • Wong PC, Zheng H, Chen H, Becher MW, Sirinathsinghji DJ, Trumbauer ME, Chen HY, Price DL, Van der Ploeg LH, Sisodia SS (1997) Presenilin 1 is required for Notchl and DIIl expression in the paraxial mesoderm. Nature 387:288–292.

    Article  PubMed  CAS  Google Scholar 

  • Yu G, Chen F, Nishimura M, Steiner H, Tandon A, Kawarai T, Arawaka S, Supala A, Song YQ, Rogaeva E, Holmes E, Zhang DM, Milman P, Fraser PE, Haass C, St George-Hyslop PS (2000) Mutation of conserved asparates affect maturation of both asparate-mutant and endogenous presenilin 1 and presenilin 2 complexes. J Biol Chem 275:27348–27353.

    PubMed  CAS  Google Scholar 

  • Zhang Z, Nadeau P, Song W, Donoviel D, Yuan M, Bernstein A, Yankner BA (2000) Presenilins are required for gamma-secretase cleavage of beta-APP and transmembrane cleavage of Notch-1. Nature Cell Biol 2:463–465.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wolfe, M.S., Esler, W.P., Kimberly, W.T., Selkoe, D.J. (2002). Presenilins, APP, and Notch: Proteolysis from Womb to Tomb. In: Christen, Y., Israël, A., De Strooper, B., Checler, F. (eds) Notch from Neurodevelopment to Neurodegeneration: Keeping the Fate. Research and Perspectives in Alzheimer’s Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55996-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55996-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62767-5

  • Online ISBN: 978-3-642-55996-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics