Skip to main content

Key Genes of Crop Domestication and Breeding: Molecular Analyses

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 63))

Abstract

The life of human beings depends on a sufficient supply with fruits, grains and vegetables, which are consumed either directly, or fed to livestock. Without crop plants such as rice, maize, wheat, tomato, potato, beans, apples and so on, human civilization as we know it would not exist. The importance of crop plants for human culture thus can hardly be overestimated. Most calories consumed by humans and livestock derive from cereals, the three globally most important of which are wheat (Triticum aestivum), rice (Oryza sativa) and maize (Zea mays ssp. mays).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A (1999) Rice gibberellin-insensitive dwarf mutant gene Dwarf1 encodes the oc-subunit of GTP-binding protein. Proc Natl Acad Sci USA 96:10284–10289

    Article  PubMed  CAS  Google Scholar 

  • Barton NH, Turelli M (1989) Evolutionary quantitative genetics: how little do we know? Annu Rev Genet 23:337–370

    Article  PubMed  CAS  Google Scholar 

  • Beadle GW (1980) The ancestry of corn. Sci Am 242:96–103

    Article  Google Scholar 

  • Becker A, Winter K-U, Meyer B, Saedler H, Theißen G (2000) MADS-box gene diversity in seed plants 300 million years ago. Mol Biol Evol 17:1425–1434

    Article  PubMed  CAS  Google Scholar 

  • Cubas P, Lauter N, Doebley J, Coen E (1999) The TCP domain: a motif found in proteins regulating plant growth and development. Plant J 18:215–222

    Article  PubMed  CAS  Google Scholar 

  • Doebley J (1990) Molecular evidence and the evolution of maize. Econ Bot 44 (Suppl 3):6–27

    Article  CAS  Google Scholar 

  • Doebley J (1992) Mapping the genes that made maize. Trends Genet 8:302–307

    PubMed  CAS  Google Scholar 

  • Doebley J (2000) A tomato gene weighs in. Science 289:71–72

    Article  PubMed  CAS  Google Scholar 

  • Doebley J, Lukens L (1998) Transcriptional regulators and the evolution of plant form. Plant Cell 10:1075–1082

    PubMed  CAS  Google Scholar 

  • Doebley J, Stec A (1991) Genetic analysis of the morphological differences between maize and teosinte. Genetics 129:285–295

    PubMed  CAS  Google Scholar 

  • Doebley J, Stec A (1993) Inheritance of the morphological differences between maize and teosinte: comparison of results for two F2 populations. Genetics 134:559–570

    PubMed  CAS  Google Scholar 

  • Doebley J, Stec A, Wendel J, Edwards M (1990) Genetic and morphological analysis of a maize-teosinte F2 population: implications for the origin of maize. Proc Natl Acad Sci USA 87:9888–9892

    Article  PubMed  CAS  Google Scholar 

  • Doebley J, Stec A, Gustus C (1995) Teosinte branched I and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141:333–346

    PubMed  CAS  Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    Article  PubMed  CAS  Google Scholar 

  • Ferrándiz C, Pelaz S, Yanofsky MF (1999) Control of carpel and fruit development in Arabidopsis. Annu Rev Biochem 68:321–354

    Article  PubMed  Google Scholar 

  • Ferrándiz C, Gu Q, Martienssen R, Yanofsky MF (2000a) Redundant regulation of meris- tem identity and plant architecture by Fruitfull, Apetala1 and Cauliflower. Development 127:725–734

    PubMed  Google Scholar 

  • Ferrándi C, Liljegren SJ, Yanofsky MF (2000b) Negative regulation of the Shatterproof genes by Fruitfull during Arabidopsis fruit development. Science 289:436–438

    Article  Google Scholar 

  • Frary A, Nesbitt TC, Frary A, Grandillo S, van der Knaap E, Cong B, Liu J, Meiler J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb LD (1984) Genetics and morphological evolution in plants. Am Nat 123:681–709

    Article  Google Scholar 

  • Gu Q, Ferrándiz C, Yanofsky MF, Martienssen R (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125:1509–1517

    PubMed  CAS  Google Scholar 

  • Hartmann U, Höhmann S, Nettesheim K, Wisman E, Saedler H, Huijser P (2000) Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J 21:351–360

    Article  PubMed  CAS  Google Scholar 

  • Kempin SA, Savidge B, Yanofsky MF (1995) Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267:522–525

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Stam P (2001) Changing paradigms in plant breeding. Plant Physiol 125:156–159

    Article  PubMed  CAS  Google Scholar 

  • Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF (2000) Shatterproof Mads-box genes control seed dispersal in Arabidopsis. Nature 404:766–770

    Article  PubMed  CAS  Google Scholar 

  • Lowman AC, Purugganan MD (1999) Duplication of the Brassica oleracea Apétala 1 floral homeotic gene and the evolution of domesticated cauliflower. J Hered 90:514–520

    Article  PubMed  CAS  Google Scholar 

  • Luo D, Carpenter R, Vincent C, Copsey L, Coen E (1996) Origin of floral asymmetry in Antirrhinum. Nature 383:794–799

    Article  PubMed  CAS  Google Scholar 

  • Luo D, Carpenter R, Copsey L, Vincent C, Clark J, Coen E (1999) Control of organ asymmetry in flowers of Antirrhinum. Cell 99:367–376

    Article  PubMed  CAS  Google Scholar 

  • Mao L, Begum D, Chuang H-W, Budiman MA, Szymkowiak EJ, Irish EE, Wing RA (2000) Jointless is a Mads-box gene controlling tomato flower abscission zone development. Nature 406:910–913

    Article  PubMed  CAS  Google Scholar 

  • Moffat AS (2000) Can genetically modified crops go ’greener’? Science 290:253–254

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Lin Y-R, Li Z, Schertz KF, Doebley JF, Pinson SRM, Liu S-C, Stansel JW, Irvine JE (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1718

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ’Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  PubMed  CAS  Google Scholar 

  • Szabó VM, Burr B (1996) Simple inheritance of key traits distinguishing maize and teosinte. Mol Gen Genet 252:33–41

    Article  PubMed  Google Scholar 

  • Theißen G (2000a) Evolutionary developmental genetics of floral symmetry: the revealing power of Linnaeus’ monstrous flower. Bioessays 22:209–213

    Article  PubMed  Google Scholar 

  • Theißen G (2000b) Shattering developments. Nature 404:711–713

    Article  PubMed  Google Scholar 

  • Theißen G (2001a) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85

    Article  PubMed  Google Scholar 

  • Theißen G (2001b) Shatterproof oil seed rape: a Fruitfull business? Mads-box genes as tools for crop plant design. Biotech News Int 6:13–15

    Google Scholar 

  • Theißen G, Saedler H (1995) MADS-box genes in plant ontogeny and phylogeny: Haeckel’s ’biogenetic law’ revisited. Curr Opin Genet Dev 5:628–639

    Article  PubMed  Google Scholar 

  • Theißen G, Saedler H (2001) Floral quartets. Nature 409:469–471

    Article  PubMed  Google Scholar 

  • Theißen G, Becker A, Di Rosa A, Kanno A, Kim JT, Münster T, Winter K-U, Saedler H (2000) A short history of Mads-box genes in plants. Plant Mol Biol 42:115–149

    Article  PubMed  Google Scholar 

  • Wang R-L, Stec A, Hey J, Lukens L, Doebley J (1999) The limits of selection during maize domestication. Nature 398:236–239

    Article  PubMed  CAS  Google Scholar 

  • Von Sengbusch R (1934) Lupinen mit nichtplatzenden Hülsen. Züchter 6:1–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Theißen, G. (2002). Key Genes of Crop Domestication and Breeding: Molecular Analyses. In: Esser, K., Lüttge, U., Beyschlag, W., Hellwig, F. (eds) Progress in Botany. Progress in Botany, vol 63. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56276-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56276-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-52304-5

  • Online ISBN: 978-3-642-56276-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics