Skip to main content
  • 383 Accesses

Abstract

ARGOS (also referred to as P91–1) is a large DoD research and development satellite mission, managed by the Tri-Service Space Division at Kirtland AFB (SMC/TE), Albuquerque, NM. It is part of the DoD Space Test Program (STP) with the objective to demonstrate several new space technologies and to fly payloads for global Earth sensing and celestial observations.1614) 1615) 1616)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://www.laafb.af.mil/SMC/PA/Fact_Sheets/Argos.htm

  2. http://www.te.plk.af.mil/stp/argos/argos.html

  3. http://www.pxi.com/brochures/argos/index.html

  4. Special issue of IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No 7, July 1996, pp. 1193–1392

    Google Scholar 

  5. R. A. McKnight, M. F. Bahrain, et al., “On-Orbit Status of the High Temperature Superconductivity Space Experiment (HTSSE-II)”, AIAA-99–4486, 1999

    Google Scholar 

  6. http://ssdd.nrl.navy.mil/www/htsse/htsse.htmlx

  7. K. S. Wood, et al., “The USA Experiment on the ARGOS Satellite: A Low Cost Instrument for timing X-ray Binaries,” SPIE Proceedings, Vol. 2280, 1994 p. 19

    Article  Google Scholar 

  8. J. H. Beall, T. Crandall P. S. Ray, “Innovative Satellite Navigation Exercises Utilizing the USA Experiment and the ARGOS Satellite,” http://www.pxi.com/brochures/argos/ARGOS_exp.pdf

  9. http://ltpwww.gsfc.nasa.gov/ISSSR-95/hyperspe.htm entitled: “Hyperspectral Imaging of the Global Ionosphere from the ARGOS Satellite,”

  10. G. R. Carruthers, T. D. Seeley, “Global Imaging Monitor of the Ionosphere (GIMI): a Far Ultraviolet Imaging Experiment on ARGOS,” SPIE Proceedings, Vol. 2831, 1996, p. 65

    Article  Google Scholar 

  11. http://spacescience.nrl.navy.mil/Branches/gimiwebpage.htm

  12. A. Dickinson, G. Oppenhäuser, et al, “The Artemis Program,” ESA Bulletin, No. 91, August 1997, pp. 32–39

    Google Scholar 

  13. A. Wilson, “ARTEMIS,” ESA publication BR-142 with the title: More than Thirty Years of Pioneering Space Activities, 1999, pp. 156–161

    Google Scholar 

  14. A. Dickinson, S. Greco, I. La Rosa, M. Protto, “The ARTEMIS Program: Near Term Advanced Communications Technology,” Proceedings of 47th AIAA Congress, Beijing, China, Oct. 7–11, 1996

    Google Scholar 

  15. Note: In very elaborate communication systems with intermediate geostationary transmission satellites, the term ‘uplink’ is usually replaced by ‘forward link’ to avoid confusion. Similarly, the term ‘downlink’ is usually replaced by ‘return link.’

    Google Scholar 

  16. Information provided by R. Killinger of DASA (now Astrium GmbH)

    Google Scholar 

  17. D. G. Fearn, “Low Cost Missions Using Ion Propulsion,” Proceeding of the British Interplanetary Society Symposium on ‘The search for life on Mars,’, London, Nov. 11, 1998

    Google Scholar 

  18. Information provided by C. Edwards of DERA

    Google Scholar 

  19. H. L. Gray, “Development of Ion Propulsion Systems,” GEC Review, Vol. 12, No 3, 1997, pp. 154–168

    Google Scholar 

  20. S. Badessi, C. F. Garriga, J. Ventura-Traveset, J. M. Pieplu, “The European ARTEMIS Satellite Navigation Payload: Enhancing EGNOS AOC Performance,” ION GPS 1998, Nashville, TN (USA), Sept. 15–18, 1998.

    Google Scholar 

  21. The ECAC coverage area is from 30° W to 45° E and from 25° N to 75° N

    Google Scholar 

  22. S. A. McDermott, D. J. Goldstein, “The Bitsy™ Spacecraft Kernel: Reducing Nanosatellite Mission Cost in the MSFC Future-X Program Through Miniaturized technologies,” Proceedings of the 13th AIAA/USU Conference on Small Satellites, Aug. 23–26, 1999, Logan UT, SSC99-IX-8

    Google Scholar 

  23. http://nssdc.gsfc.nasa.gov/nmc/sc-query.html

  24. M. D. Rayman, Ph. Varghese, D. H. Lehman, L. L. Livesay, “Results from the Deep Space 1 Technology Validation Mission,” 50th International Astronautical Congress, Amsterdam, The Netherlands, Oct. 4–8, 1999, IAA-99-IAA.11.2.01, the paper is also published in Acta Astronautica, Vol. 47, No 2–9, pp. 475–487, Sept. 2000

    Google Scholar 

  25. http://nmp.jpl.nasa.gov/dsl/

  26. R. M. Nelson, “Deep Space One: Preparing for Space Exploration in the 21st Century,” EOS, Vol. 79, No. 41, Oct. 13, 1998, pp. 493–496

    Article  Google Scholar 

  27. D. Normile, “NASA Craft to Take the Controls in Flight,” Science, Vol. 282, Oct. 23, 1998, pp. 604–605

    Article  Google Scholar 

  28. J. Oberst, B. Brinkmann, B. Giese, “Geometric Calibration of the MICAS CCD Sensor on the DS1 Spacecraft: Laboratory versus In-flight Data Analysis,” Proceedings of ISPRS, Amsterdam, The Netherlands, July 16–23, 2000, Vol. XXXIII B1, pp. 221–230

    Google Scholar 

  29. It turned out that remote agent did have a problem (which, of course, is the reason for testing it!) that prevented it from continuing for the entire three days. The experiment was successful in that the bug was found. However, the bug did not present a risk to the spacecraft, so another experiment was designed and allowed the remote agent to complete all of its test objectives.

    Google Scholar 

  30. Note: The asteroid, discovered in 1992, was only recently (1999) named in honor of Louis Braille (1809–1852), the Frenchman, who invented the alphabet for the blind.

    Google Scholar 

  31. S. G. Ungar, “Technologies for Future Landsat Missions,” PE&RS, Vol. LXII, No. 7, July 1997, pp. 901–905

    MathSciNet  Google Scholar 

  32. http://eol.gsfc.nasa.gov/Technology/Documents/InstrumentOverview.html

  33. http://eol.gsfc.nasa.gov/Technology/ALImultispectral.htm

  34. Information provided by Andrew Hoskins of General Dynamics

    Google Scholar 

  35. W. L. Smith, et al., “Geostationary Fourier Transform Spectrometer (GIFTS)-The New Millennium Earth Observing-3 Mission,” IRS ’00: Current Problems in Atmospheric Radiation, edited by W. L. Smith and Y. U. Timofeev, A. Deepak Publishing, Hampton Virginia, 2001.

    Google Scholar 

  36. http://nmp.jpl.nasa.gov/eo3/index.html

  37. http://oea.larc.nasa.gov/PAIS/GIFTS.html

  38. http://its.ssec.wisc.edu/-bormin/GIFTS/

  39. http://danspc.larc.nasa.gov/GIFTS/

  40. I. Kawano, M. Mokuno et. al., “Result of Autonomous Rendezvous Docking Experiment of Engineering Test Satellite VII,” Journal of Spacecraft and Rockets, Vol.38, No.1, Jan.-Feb, 2001. p.105

    Article  Google Scholar 

  41. I. Kawano, M. Mokuno, T. Miyano, T. Suzuki, “Analysis and Evaluation of GPS Relative Navigation Using Carrier Phase for RVD Experiment Satellite of ETS-VII,” ION GPS-2000, Sept. 19–22, 2000, Salt Lake City, UT, pp. 1655–1660

    Google Scholar 

  42. M. Mokuno et. al., “Experimental Result of Autonomous Rendezvous Docking on Japanese ETS-VII satellite,” Proceedings of the Annual AAS Guidance and Control Conference, AAS99–022

    Google Scholar 

  43. G. Visentin, F. Didot, “Testing Space Robotics on the Japanese ETS-VII Satellite,” ESA Bulletin No. 99, Sept. 1999, pp. 61–65

    Google Scholar 

  44. M. Homma, S. Yoshimoto, N. Natori, Y. Tsutsumi, “Engineering Test Satellite-8 for Mobile Communications and Navigation Experiment,” 51st IAF Congress, Rio de Janeiro, Brazil, Oct. 2–6, 2000, IAF-00-M.3.01

    Google Scholar 

  45. A. Meguro, A. Tsujihata, N. Hamamoto, M. Homma, “Technology status of the 13 m aperture deployment antenna reflectors for Engineering Test Satellite VIII,” Acta Astronautica, Vol. 47, No 4–7, 2000, pp. 147–152

    Article  Google Scholar 

  46. S. Russell, M. Vesely, C. Graham, M. Petkovic, “Progress Towards FedSat 2001 A’stralian Space Odyssey,” Proceedings of the 13th AIAA/USU Conference on Small Satellites, Aug. 23–26, 1999, Logan UT, SSC99-IX-6

    Google Scholar 

  47. http://www.crcss.csiro.au/

  48. A. J. Barrington-Brown, A. N. Wicks, et al., “FedSat — an advanced microsatellite based on a MicroSIL bus,” Proceedings of the 12th AIAA/USU Conference on Small Satellites, Logan, UT, Aug./Sept, 1998

    Google Scholar 

  49. E. C. Graham, “FedSat: An Australian research microsatellite mission,” IAF Congress, Melbourne, Australia, 1998, in Acta Astronautica, 1999

    Google Scholar 

  50. S. C. O. Grocott, “Modular Attitude Control System for Microsatellites with Stringent Pointing Requirements,” Proceedings of the 14th AIAA/USU Conference on Small Satellites, Logan, UT, Aug. 21–24, 2000, SSC00-VIII-6

    Google Scholar 

  51. http://www.crcss.csiro.au/reports/rept2000/Part05.htm

  52. Note: ARGO is a component of the international Global Qeean Data Assimilation Experiment (GODAE).

    Google Scholar 

  53. C. Graham, M. Petkovik, S. Russell, E. S. Seumahu, M. Vesely, “The FedSat Microsatellite,” Proc. of ICICS’99 (International Conference on Information Communications and Signal Processing), Singapore, Dec. 7–10, 1999

    Google Scholar 

  54. B. J. Fraser, C. T. Russell, J. D. Means, F. W. Menk, C. L. Waters, “FedSat — An Australian Research Microsatellite,” Advances in Space Research, Vol 25, Issue 7–8, pp.1325–1336, 2000.

    Article  Google Scholar 

  55. Information provided by Thomas P. Yunck of JPL and Bill Falkenberg of SpectrumAstro Inc.

    Google Scholar 

  56. M. Usui, M. Takei, K. Arai, R. Kuramasu, “MDS Project: New Challenge of Japanese Satellite Development,” Proceedings of the 51st IAF Congress, Rio de Janeiro, Oct. 2–6,. 2000, IAF-00-U.1..06

    Google Scholar 

  57. http://yyy.tksc.nasda.go.jp/Home/Projects/MDS/index_e.html

  58. http://ossl.tksc.nasda.go.jp/mds/what-e.html

  59. Information provided by Akio Yamamoto of NASDA

    Google Scholar 

  60. T. Nagai, M. Mokuno, “Small Satellite Development and Future Vision of NASDA,” Proceedings of the 6th ISU Symposium on Smaller Satellites: Bigger Business?, Strasbourg, France, May 21–23, 2001

    Google Scholar 

  61. J. Freeman, C. Rudder, P. Thomas, “MightySat II: On-orbit Lab Bench for Air Force Research Laboratory,” Proceedings of the 14th Annual AIAA/USU Conference on Small Satellites, SSC00-I-2, Aug. 21–24, 2000

    Google Scholar 

  62. R. J. Davis, J. F. Monahan, T. J. Itchkawich, “MightySAT I: Technology in Space for about a Nickel,” Proceedings of the 10th Annual AIAA/Utah State University Conference on Small Satellites, Sept. 16–19, 1996

    Google Scholar 

  63. B. Braun, R. Davis, T. Itchkawich, T. Goforth, “MightySat-I: In Space,” Proceedings of 13th Annual AIAA/USU Conference on Small Satellites, Logan Utah, Aug. 23–26, 1999, SSC-99-I-3

    Google Scholar 

  64. http://www.vs.afrl.af.mil/factsheets/msat.html

  65. B. Braun, R. Davis, T. Itchkawich, T. Goforth, “MightySat-I: Transitioning Space Technology to the Warfighter,” AIAA-99–4484, 1999

    Google Scholar 

  66. http://setas-www.larc.nasa.gov/mpid/mpid.html

  67. http://www.vs.afrl.af.mil/vsd/mighrysatll/index.html

  68. http://www.spectrumastro.com/

  69. http://www.vs.afrl.af.mil/factsheets/msat2.html

  70. L. J. Otten III, A. D. Meigs, et al., “The engineering model for the MightySat II.1 hyperspectral imager,” Proceedings of the Sensors, Systems and Next Generation Satellites, SPIE Vol. 3221–54, Sept. 1, 1997, London, UK, pp. 412–420

    Article  Google Scholar 

  71. Courtesy of Leonard John Otten III of Kestrel Corporation, Albuquerque, NM

    Google Scholar 

  72. B. Iannotta, “SWARM,” Smithsonian Air & Space, August/September, 2000, pp. 44–49

    Google Scholar 

  73. Paper provided by M. A. Garcia Primo of INTA

    Google Scholar 

  74. M. A. Garcia Primo, “Spanish MINISAT Program — Objectives and Operational Results,” Proceedings of the 4th International Symposium on Small Satellites Systems and Services, Sept. 14–18, 1998, Antibes Juan les Pins, France

    Google Scholar 

  75. F. Cerezo Martinez, “ MINISAT-01 (One Year After),” Proceedings of the 4th International Symposium on Small Satellites Systems and Services, Sept. 14–18, 1998, Antibes Juan les Pins, France

    Google Scholar 

  76. P. Sabatini, R. Aceti, et al, “MITA: In-Orbit Results of the Italian Small Platform and the first Earth Observation Mission, HYPSEO,” Proceedings of the 3rd International Symposium of IAA, Berlin, Apr. 2–6, 2001, pp.71–74

    Google Scholar 

  77. P. Sabatini, T. Lupi, “The MITA satellite: an Italian bus for small missions,” IAA 2nd International Symposium on Small Satellites for Earth Observation, Berlin, April 12–16, 1999, pp. 35–37

    Google Scholar 

  78. M. Casolino, et al, “Continuation of the mission NINA: Nina-2 experiment on MITA satellite,” Proceedings of 26th ICRC, Salt Lake City, 1999, OG 4.2.17

    Google Scholar 

  79. R. Sparvoli, et al., “Launch in orbit of the telescope NINA for cosmic ray observations: preliminary results,” Proceedings of The Sixth Topical Seminar on ‘Neutrino and Astro-Particle Physics,’ Centro Studi T Cappuccini’ in San Miniato al Todesco, Italy, May 17–21, 1999

    Google Scholar 

  80. John D. Mill, et al., “Midcourse Space Experiment: Introduction to the Spacecraft, Instruments, and Scientific Objectives,” Journal of Spacecraft and Rockets, Vol. 31, No. 5, September-October 1994, pp. 900–907

    Article  Google Scholar 

  81. J. F. Carbary, E. H. Darlington, K. Heffernan, T. J. Harris, C. I. Meng, M. J. Mayr, P. J. McEvaddy, K. Peacock, “Aerial Surveillance Sensing Including Obscured and Underground Object Detection,” Proceedings of SPIE, April 4–6, 1994, Orlando Florida, Volume 2217

    Google Scholar 

  82. Note: The spatial resolution of the SPIMs is driven by the point-spread function in one direction (along the slit) and by the point-spread function and. the mirror step size in the other direction. For the 0.05° mirror steps one can assume that it is driven by the point-spread function in both directions, and is about 0.85 mrad. The spatial resolution is diminished by using the 0.1° steps or by reducing the number of bins in the readout, by co-adding 2, 4, or 8 adjacent pixels. This is to reduce the bandwidth requirement by trading spatial resolution, spectral resolution and frame rate. The nadir resolution is 0.85 mrad × 900 km ≃ 770 m. Nadir FOV is 17 mra d (1°) × 900 km ≃ 15 km × 15 km.

    Google Scholar 

  83. Note: The bins are formed in the SPIM electronics by co-adding 1,2, or 4 adjacent pixels; this is done to reduce the data bandwidth requirement in cases where UVISI is not the principal instrument, or higher frame rates are needed which can be traded off against resolution. For the case of 136 and 272 bins, the bins overlap; for the case of 68 bins, the bins are noncontiguous.

    Google Scholar 

  84. Information provided by Bernard Tatry of CNES

    Google Scholar 

  85. J. P. Aguttes, “High Resolution (metric) SAR Microsatellite Based on the CNES Myriade bus,” Proceedings of IGARSS-2001, July 9–13, 2001, Sydney Australia

    Google Scholar 

  86. DEMETER brochure of CNES, provided by Bernard Tatry

    Google Scholar 

  87. P. Touboul, B. Foulon, L. Lafargue, G. Metris, “The Microscope Mission,” Proceedings of the IAF Congress, Rio de Janeiro, Brazil, Oct. 2–6, 2000, IAF-00-J1.06

    Google Scholar 

  88. http://www-projet.cst.cnes.fr:8060/PARASOL/index.html 1702) Information provided by Bernard Tatry of CNES

  89. L. Dame, M. Meissonnier, B. Tatry, “Picard Microsatellite Program,” 5th International Symposium on Small Satellites Systems and Services, La Baule, France, June 19–23, 2000

    Google Scholar 

  90. T. Wilson, C. Davis, “Naval EarthMap Observer (NEMO) Satellite,” Proceedings of SPIE, Vol. 3753, Denver, CO, July 19–21, 1999, pp. 2–11

    Article  Google Scholar 

  91. Note: In Dec. 1999, STDC was acquired by Earth Search Sciences Inc. of Alexandria, VA

    Google Scholar 

  92. http://nemo.nrl.navy.mil/public/index.html

  93. C. O. Davis, K. Carder, “Requirements Driven Design of an Imaging Spectrometer System for Characterization of the Coastal Environment,” Proceedings of SPIE, Vol. 3118, San Diego, CA, 1997

    Google Scholar 

  94. C. O. Davis, “The Hyperspectral Remote Sensing Technology (HRST) Program,” NRL White Paper, 1997

    Google Scholar 

  95. C. O. Davis, K. Carder, “Requirements Driven Design of an Imaging Spectrometer System for Characterization of the Coastal Environment,” Proceedings of SPIE, Vol. 3118, San Diego, CA, 1997

    Google Scholar 

  96. M. Corson, “Calibration of the NEMO sensor imaging payload,” SPIE Proceedings, Vol. 3437, 1998

    Google Scholar 

  97. A. Myers, “NEMO satellite sensor imaging payload,” SPIE Proceedings, Vol. 3437, 1998

    Google Scholar 

  98. J. Bowles, et al., “Hyperspectral Data Compression and Science Algorithms for the NEMO Satellite,” Proceedings of 1st EARSeL Workshop on Imaging Spectroscopy, University of Zürich, Switzerland, Oct. 6–8. 1998, pp. 183–190

    Google Scholar 

  99. http://nssdc.gsfc.nasa.gov/nmc/sc-query.html

  100. I. S. Haas, R. Shapiro, “The Nimbus Satellite System: Remote Sensing R&D Platform of the 1970s,” Monitoring Earth’s Ocean, Land, and Atmosphere from Space — Sensors, Systems, and Applications, Progress in Astronautics and Aeronautics, AiAA, Volume 97, 1985, pp. 71–95

    Google Scholar 

  101. “The NIMBUS-7 User’s Guide,” NASA/GSFC, Prepared by The Landsat/Nimbus Project, Aug. 1978 1716) “NIMBUS-7, Observing the Atmosphere and Oceans,” NASA pamphlet Dec. 1983

    Google Scholar 

  102. T. Yamawaki, T. Jono, M. Toyoshima, K. Nakagawa, A. Yamamoto, K. Shiratama, Y. Koyama, “Development of LUCE for OICETS,” 51st IAF Congress, Rio de Janeiro, Brazil, Oct. 2–6, 2000, IAF-OO-M.2.05

    Google Scholar 

  103. OICETS brochure of NASDA

    Google Scholar 

  104. K. Nakagawa A. Yamamoto, M. Tbyoda, “Performance test result of LUCE engineering model,” Photonics West, Free Space Laser Communications Technologies XII of SPIE, San Jose, CA, Jan. 22–26, 2000

    Google Scholar 

  105. http://yyy.tksc.nasda.go.jp/Home/Satellites/e/oisets_e.html

  106. M. Tobin, et al., “Off-the-shelf Microsatellites for Science and Technology Missions,” Proceedings of the 11th AIAA/USU Conference on Small Satellites, Sept. 15–18, 1997, Logan, UT 1722) “PICOSat Launch Set for August 2001,” Space News, Dec. 18, 2000, p. 2

    Google Scholar 

  107. Information provided by Joseph. J. Surer of JHU/APL, Laurel, MD

    Google Scholar 

  108. Information provided by Paul R. Straus of The Aerospace Corporation, El Segundo, CA

    Google Scholar 

  109. D. Bernaerts, F. Teston, J. Bermyn, “PROBA (Project for On-Board Autonomy),” Proceedings of the 6th ISU Symposium on Smaller Satellites: Bigger Business?, Strasbourg, France, May 21–23, 2001

    Google Scholar 

  110. F. Teston, R. Creasey, J. Bermyn, D. Bernaerts, K. Mellab, “PROBA: ESA’s Autonomy and Technology Demonstration Mission,” Proceedings of the 13th AIAA/USU Conference on Small Satellites, Logan UT, Sept. 23–26,1999, SSC99-V-8

    Google Scholar 

  111. F. Teston, R. Creasey, J. van der Ha, “PROBA: ESA’s Autonomy and Technology Demonstration Mission,” IAA-97–1.3.05, 48th International Astronautical Congress, Oct. 6–10, 1997, Turin, Italy

    Google Scholar 

  112. M. A. Cutter, D. R. Lobb, T. L. Williams, R. E. Renton, “Integration & Testing of the Compact High-Resolution Imaging Spectrometer (CHRIS),” Proceedings of SPIE, Vol. 3753, Denver, CO, July 19–21, 1999, pp. 180–191

    Article  Google Scholar 

  113. M. A. Cutter, D. R. Lobb, R. A. Cockshott, “Compact High Resolution Imaging Spectrometer (CHRIS),” IAA 2nd International Symposium on Small Satellites for Earth Observation, Berlin, April 12–16, 1999, pp. 205–208

    Google Scholar 

  114. “Exploitation of CHRIS data from the PROBA Mission,” Experimenters Handbook, Issue 4, Oct. 18, 1999

    Google Scholar 

  115. TEMIC was a daughter of Daimler-Benz until 1997 when it was acquired by Vishay and in 1998 sold to Amtel (with plants in Heilbronn, Germany and Nantes, France)

    Google Scholar 

  116. R. Cockshott, D. Purll, N. Fillery, V. Lewis, “The UK Wide Angle Star Sensor (WASS),” Presented at the poster session of the 4th ESA International Conference on Spacecraft Guidance, Navigation and Control Systems, Oct. 18–21, 1999, Noordwijk.

    Google Scholar 

  117. L. M. Ward, P. Axelrad, “A Combined Filter for GPS-Based Attitude and Baseline Estimation,” Navigation: Journal of The Institute of Navigation, Vol. 44, No. 2, Summer 1997, pp. 195–213

    Google Scholar 

  118. L. M. Ward, P. Axelrad, “Spacecraft attitude estimation using GPS: Methodology and results for RADCAL,.” Navigating the 90s: Technology/Applications, and Policy, Proceedings of The Institute of Navigation, National Technical Meeting, Anaheim, Calif., 18–20 January, The Institute of Navigation, Alexandria, Va., pp. 813–825.

    Google Scholar 

  119. Information provided by Lihua Zhang of CAST, Beijing, China

    Google Scholar 

  120. G. D. Racca, A. Elfving, A. Marini, et al., “SMART-1 mission description and development status”, Submitted to Planetary and Space Science, MS-No: PSS 79, October 30, 2000

    Google Scholar 

  121. G. D. Racca, G. P. Whitcomb, B. H. Foing, “The SMART-1 Mission,” ESA Bulletin 95, Aug. 1998, pp. 72–81

    Google Scholar 

  122. http://www.estec.esa.nl/spdwww/smartl/html/overview.html

  123. http://sci.esa.int/smart/

  124. B. H. Foing, G. Racca, A. Marini, et al., “Status of SMART-1 ESA Mission to the Moon,” 31st Lunar and Planetary Science Conference, March 13–17, 2000, Houston, TX

    Google Scholar 

  125. http://www.ssc.se/ssd/smartl.html

  126. http://sci.esa.int/content/doc/10/19216_.htm

  127. http://sspgl.bnsc.rl.ac.uk/Share/d-cixs.htm

  128. M. Grande, et al., “Lunar Elemental Composition and Investigations with D-CIXS X-Ray Mapping Spectrometer on SMART-1,” 31st Lunar and Planetary Science Conference, March 13–17, 2000, Houston, TX

    Google Scholar 

  129. S. K. Dunkin, M. Grande, et al., “The D-CIXS X-Ray Spectrometer on ESA’s SMART-1 Mission to the Moon: Science Objectives,” 31st Lunar and Planetary Science Conference, March 13–17, 2000, Houston, TX

    Google Scholar 

  130. http://disr01.mpae.gwdg.de/wuttke/SIR/SIR.htm

  131. P. W. Gloyer, D. J. Goldstein, “Small Payload Orbit Transfer (SPORT) System: Lowering Launch Cost Without Increased Risk,” IEEE Aerospace Conference, Big Sky, Montana, March 10–17, 2001, 0–7803–6599–2/01

    Google Scholar 

  132. P. W. Gloyer, D. J. Goldstein, “ Small Payload Orbit Transfer (SPORT) System: An Innovative Approach to Lowering Missions Costs without Increased Risk,” Proceedings or the 14th Annual AIAA/USU Conference on Small Satellites, LOgan, UT, Aug. 21–24, 2000, SSC00-IV-6

    Google Scholar 

  133. Information provided by Aaron Jacobovits of AeroAstro

    Google Scholar 

  134. http://www.aeroastro.com/pressroom.html

  135. R. Fleeter, “New Propulsive Module for Nanosatellites,” Proceedings of the 6th ISU Symposium on Smaller Satellites: Bigger Business?, Strasbourg, France, May 21–23, 2001

    Google Scholar 

  136. N. Wells, J. Eves, P. Mace, “Space Technology Research Vehicles STRV-1A and -IB,” Final Report (DRA, ESA, BMDO) Vol. 1, August 1995

    Google Scholar 

  137. N. Wells, “The Space Technology Research Vehicles STRV-1A and -IB: Mission Update,” paper provided by the author

    Google Scholar 

  138. R. Blott, N. Wells, “The Space Technology Research Vehicles: STRV-1A,B,C&D,” Proceedings of the AIAA/ USU Conference on Small Satellites, Sept. 16–19, 1996, Logan, UT

    Google Scholar 

  139. http://www.dra.hmg.gb/html/case/strv/menu.htm

  140. N. Wells, “Space Technology Research Vehicles (STRV-la and -lb): Lessons Learned After four Years in GTO,” Proceedings of the 4th International Symposium on Small Satellites Systems and Services, Sept. 14–18, 1998, Antibes Juan les Pins, France

    Google Scholar 

  141. Note: Differential charging of surface material occurs when these materials are electrically isolated, either from the S./C structure or from neighboring surfaces, or when the surfaces are insulators themselves. In these situations charge build-up cannot leak away, resulting in large potential differences between neighboring surfaces.

    Google Scholar 

  142. http://www.jpl.nasa.gov/adv_tech/coolers/Integ.htm

  143. A. Cant, H. Simpson, “STRV-1c & -d Satellite Architecture Design Document,” March 1998, provided by DERA

    Google Scholar 

  144. N. Wells, “STRV-lc & -d Mission Definition Specification,” Feb. 1998, provided by DERA

    Google Scholar 

  145. N. Wells, R. Blott, “STRV-1c&d Program Update,” Proceedings of the 11th AIAA/USU Conference on Small Satellites, Sept. 15–18, 1997, Logan, UT

    Google Scholar 

  146. http://www.dera.gov.uk/html/case/strv/high.htm

  147. N. Wells, “Countdown to launch of the first microsatellites qualified for flight on Ariane-5 ASAP,” Proceedings of the 14th Annual AIAA/USU Conference on Small Satellites, Logan, UT, Aug. 21–24, 2000, SSC00-I-7

    Google Scholar 

  148. M. Bandecchi, W. J. Ockels, “The TEAMSAT Experience,” ESA Bulletin 95, Aug. 1998, pp. 132–143

    Google Scholar 

  149. A. Bradford, F. Müller-Stute, B. Sarti, “Engineering TEAMSAT — From Concept to Delivery,” ESA Bulletin 95, Aug. 1998, pp. 144–147

    Google Scholar 

  150. S. Habinc, D. Hardy, P. Sinander, C. Smith, “TEAMSAT’s Data-Handling Systems,” ESA Bulletin 95, Aug. 1998, pp. 148–151

    Google Scholar 

  151. M. Jones, B. Melton, M. Bandecchi, “TEAMSAT’s Low-Cost EGSE and Mission Control Systems,” ESA Bulletin 95, Aug. 1998, pp. 152–157

    Google Scholar 

  152. http://www.estec.esa.nl/teamsat/

  153. C. Smith, “Low-cost, ASIC-based Telemetry and Telecommand Systems — The TEAMSAT Experience,” Proceedings of the 4th International Symposium on Small Satellites Systems and Services, Sept. 14–18, 1998, Antibes Juan les Pins, France

    Google Scholar 

  154. J. L. Joergehsen, et al., “Radiation Impacts on Star-Tracker Performance and Vision Systems in Space,” IAA 2nd International Symposium on Small Satellites for Earth Observation, Berlin, April 12–16, 1999, pp. 393–396

    Google Scholar 

  155. M. Betto, et al., “The Determination of the Attitude and Attitude Dynamics of TEAMSAT,” IAA 2nd International Symposium on Small Satellites for Earth Observation, Berlin, April 12–16, 1999, pp. 397–400

    Google Scholar 

  156. D. A. Arnold, “The Behavior of Long Tethers in Space,” The Journal of the Astronautical Sciences, Vol. 35, No. 1, January-March 1987, pp. 3–18

    Google Scholar 

  157. I gratefully acknowledge the major review, revision and addition of this chapter provided by Michael Zedd of NRL, Washington, D. C.

    Google Scholar 

  158. R. L. Forward, J. Davis, “Doing the Do-Si-Do,” Launchspace Magazine, April/May 1998

    Google Scholar 

  159. M. L. Cosmo, E. C. Lorenzini (editors), “Tethers In Space Handbook,” Third Edition, Dec. 1997, NASA/MSFC, download from http://cfa-www.harvard.edu/spgroup/handbook.html

    Google Scholar 

  160. L. Johnson, R. D. Estes, E. Lorenzini, et al., “Electrodynamic Tethers for Space Propulsion,” Proceedings of AIAA, Reno, NV, Jan. 12–15, 1998, AIAA 98–0983

    Google Scholar 

  161. http://www.tethers.com

  162. http://www.airseds.com/astor.html

  163. J. Oberg, “Saving MIR With A Rope Trick,” IEEE Spectrum, July 2000, Vol. 37, No. 7

    Google Scholar 

  164. http://www.finds-space.org/METS.html

  165. A. Jablonski, F. Vigneron, G. Tyc, and H. G. James, “OEDIPUS-C Mission Tether Dynamics Results,” paper presented at the Tether Technology Interchange Meeting, MSFC, Sept. 9–10, 1997, NASA/CP-1998–206900

    Google Scholar 

  166. J. McCoy, et al., “Plasma Motor-Generator (PMG) Flight Results,” Proceedings of the Fourth International Conference On Tethers In Space, Science and Technology Corp., Hampton, VA, Apr. 1995, pp. 57–82

    Google Scholar 

  167. L. Johnson, J. Ballance, “Propulsive Small Expendable Deployer Systems (ProSEDS) Space Demonstration,” paper presented at the Tether Technology Interchange Meeting, MSFC, Sept., 9–10, 1997, NASA/ÇP-1998–206900

    Google Scholar 

  168. http://stp.msfc.nasa.gov/astp/proseds.html

  169. L. Johnson, “The Tether Solution,” IEEE Spectrum, July 2000, Vol. 37; No. 7

    Google Scholar 

  170. http://std.msfc.nasa.gov/astp/tethers_electetherprop3.html

  171. H. F. Smith; “The First and Second Flights of the Small Expendable Deployer System (SEDS),” Proceedings of the Fourth International Conference On Tethers In Space, Science and Technology Corp., Hampton, VA, Apr. 1995, pp. 43–56.

    Google Scholar 

  172. http://ixeab8.larc.nasa.gov/seds/

  173. http://std.msfc.nasa.gov/astp/tethers_reentrycaps.html

  174. W. Barnds, S. Coffey, M. Davis, et. al., “TiPS: Results of a Tethered Satellite Experiment,” paper presented at the AAS/AIAA Astrodynamics Conference in August 4–7, 1997, Sun Valley, Idaho, AAS 97–600.

    Google Scholar 

  175. http://hyperspace.nrl.navy.mil/TiPS/home.html

  176. K. T. Alfriend, W. J. Barnds, et al., “Attitude and Orbit Determination of a Tethered Satellite System,” AAS/AIAA Astrodynamics Specialist Conference, Halifax, Nova Scotia, Aug. 14–17, 1995, AAS 95–351

    Google Scholar 

  177. Note: Ralph and Norton are two characters of the Honeymooner’s television fame (mainly during the 1950–60s), representing adequately the satellite mass ratio

    Google Scholar 

  178. J. G. Izquierdo, H. Rozemeijer, S. Müncheberg, “The Tether System Experiment — Preparing for ESA’s First Tether Mission,” ESA Bulletin No 102, May 2000, pp. 139–143

    Google Scholar 

  179. N. Stone, et al., “A Review of Scientific and Technological Results from the TSS-1R Mission,” paper presented at the Tether Technology Interchange Meeting, MSFC, Sept. 9–10, 1997, NASA/CP-1998–206900

    Google Scholar 

  180. B. Strim, M. Pasta, and E. Allais, “TSS-1 vs. TSS-1R,” Proceedings of the Fourth International Conference On Tethers In Space, Science and Technology Corp., Hampton, VA, Apr. 1995, pp. 27–42

    Google Scholar 

  181. P. Brooks, “TOPSAT — High Resolution Imaging From a Small Satellite,” Proceedings of the 3rd International Symposium of the IAA, Berlin, April 2–6, 2001, pp. 319–322

    Google Scholar 

  182. Camera image courtesy of RAL, spacecraft image courtesy of DERA

    Google Scholar 

  183. K. M. Wallace, I. Parker, “The Topsat Satellite,” IGARSS 2001, Sydney, Australia, July 9–13, 2001

    Google Scholar 

  184. http://www.te.plk.af.mil/stp/tsx5/strv2/strv2.html

  185. S. J. Cawley, S. Murphy, A. Willig, P. S. Godfree, “The Space Technology Research Vehicle 2 Medium Wave Infrared Imager,” Proceedings of the 3rd International Symposium of IAA, Berlin, April 2–6, 2001

    Google Scholar 

  186. K. K. Denoyer, R. S. Erwin, R. R. Ninneman, “Advanced SMART Structures Flight Experiments for Precision Spacecraft,” Acta Astronautica, Vol. 47, No 2–9, 2000, pp. 389–397

    Article  Google Scholar 

  187. http://setas-www.larc.nasa.gov/strv2/strv2.html

  188. http://www.vsbs.plh.af.mil/projects/cease/cease.html

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kramer, H.J. (2002). Technology Missions. In: Observation of the Earth and Its Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56294-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56294-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62688-3

  • Online ISBN: 978-3-642-56294-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics