Skip to main content

Evolution of the Interfacial Electronic Structure During Thermal Oxidation

  • Chapter
Fundamental Aspects of Silicon Oxidation

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 46))

Abstract

The narrowest feature on an integrated circuit is currently the gate oxide. At the end of the last century, gate oxides less than 20 Å were used in some commercial integrated circuits. Between 2004 and 2008, if silicon dioxide is still to be used, then the projected gate-oxide thickness will be less than 1 nm, or 5 silicon atoms across. At least two of those five atoms will be at silicon/oxide interfaces. The interfacial atoms have very different electrical and optical properties from the desired bulk silicon dioxide yet comprise a significant fraction of the dielectric layer. This fundamental problem has also become a very practical one. It is now technologically possible to produce metal oxide semiconductor field effect transistors (MOSFETs) with gates shorter than 50nm and SiO2 gate oxides less than 1.3nm thick [1]. Such a thin gate oxide is required to improve the drain-current response of the transistor to the applied gate voltage (allowing lower voltages to be used). Since power dissipation currently limits the scale of integration, lowering the power supply voltage becomes the key to increasing integration and improving IC performance. Therefore, the performance of the gate oxides is central to the improvement of very large-scale integrated circuits. Since a practical alternative to SiO2 (or its nitrogenated derivatives), providing a higher dielectric constant or a reduced leakage current, has not been identified yet [2], it is crucial to the future of large-scale integration to discover the practical limits on the thickness of the SiO2 gate oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Timp et al, IEDM Technical Digest, San Fransisco, 6–9 Dec, 615 (1998).

    Google Scholar 

  2. Semiconductor Industry Association, The National Technology Roadmap for Semiconductors (Sematech, Austin, 1997), pp. 71–81.

    Google Scholar 

  3. F. Cyrot-Lackmann, J. Phys.,Chem. Solids 29, 1235 (1968).

    Article  CAS  Google Scholar 

  4. J. B. Neaton, D. A. Muller and N. W. Ashcroft,Phys. Rev. Lett. 85, 1298 (2000).

    Article  CAS  Google Scholar 

  5. A. Ourmazd, D. W. Taylor, J. A. Rentschler and J. Bevk,Phys. Rev. Lett. 59, 213 (1987).

    Article  CAS  Google Scholar 

  6. F.J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi, J. A. Yarmoff and G. Hollinger, Phys. Rev. B 38, 6084 (1988).

    Article  CAS  Google Scholar 

  7. P. J. Grunthaner and F. J. Grunthaner,J. Vac. Sci. Technol. 20, 680 (1982).

    Article  CAS  Google Scholar 

  8. A. Pasquarello, M. S. Hybertsen and R. Car, Phys. Rev. B53, 10942 (1996).

    Google Scholar 

  9. F. R. McFeely, K. Z. Zhang, M. M. Banaszak loll, S. Lee and J. E. Bender IV, J. Vac. Sci. Technol. B 14, 2824 (1996).

    Article  CAS  Google Scholar 

  10. D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt, G. Timp, Nature 399, 758 (1999).

    Article  CAS  Google Scholar 

  11. C. Kaneta and T. Yamasaki,Microelectronic Engineering 48, 117 (1999).

    Article  CAS  Google Scholar 

  12. A. V. Crewe, J. Wall and J. Langmore, Science 168, 1338 (1970).

    Article  CAS  Google Scholar 

  13. A.V. Crewe, J. P. Langmore and M. S. Isaacson, in Physical Aspects of Electron Microscopy and Microbeam Analysis, edited by B. M. Siegel and D. R. Beaman (Wiley, New York, 1975), p. 47.

    Google Scholar 

  14. S. J. Pennycook and L. A. Boatner, Nature 336, 565 (1988).

    Article  CAS  Google Scholar 

  15. D. H. Shin, E. J. Kirkland and J. Silcox, Appl. Phys. Lett. 55, 2456 (1989).

    Article  CAS  Google Scholar 

  16. P. E. Batson, Nature 366, 728 (1993).

    Article  Google Scholar 

  17. N. D. Browning, M. M. Chisholm and S. J. Pennycook, Nature 366, 143 (1993).

    Article  CAS  Google Scholar 

  18. D. A. Muller, Y. Tzou, R. Raj and J. Silcox, Nature 366, 725 (1993).

    Article  CAS  Google Scholar 

  19. A. Howie, J. Microscopy 17, 11 (1979).

    Article  Google Scholar 

  20. M. Treacy and S. B. Rice, J. Microscopy 156, 211 (1989).

    Article  CAS  Google Scholar 

  21. E.J. Kirkland, R. F. Loane and J. Silcox, Ultramicroscopy 23, 77 (1987).

    Article  Google Scholar 

  22. R. F. Loane, E. J. Kirkland and J. Silcox, Acta. Cryst. A44, 912 (1988).

    CAS  Google Scholar 

  23. E. M. James and N. D. Browning, Ultramicroscopy 78, 125 (1999).

    Article  CAS  Google Scholar 

  24. O. L. Krivanek, N. Delby and A. R. Lupini, Ultramicroscopy 78, 1 (1999).

    Article  CAS  Google Scholar 

  25. D. A. Muller, J. Grazul, F. H. Baumann, R. Hynes and T. L. Hoffman, in Microscopy and Microanalysis 2000, edited by G. W. Bailey (Springer, New York, 2000).

    Google Scholar 

  26. O. Scherzer, J. Appl. Phys. 20, 20 (1949).

    Article  Google Scholar 

  27. E. Zeitler and M. G. R. Thomson, Optik 31, 258 (1970).

    Google Scholar 

  28. G. Black and E. H. Linfoot, Proc. Roy. Soc. (London) A239, 522 (1957).

    Google Scholar 

  29. J. Silcox, P. Xu and R. L. Loane, Ultramicroscopy 47, 173 (1992).

    Article  CAS  Google Scholar 

  30. S. J. Pennycook, Ultramicroscopy 30, 58 (1989).

    Article  Google Scholar 

  31. D. D. Perovic, C. J. Rossow and A. Howie, Ultramicroscopy 52, 353 (1993).

    Article  CAS  Google Scholar 

  32. P. H. Citrin, D. A. Muller, H. Gossmann and R. Vanfleet, Phys. Rev. Lett. 83, 3234 (1999).

    Article  CAS  Google Scholar 

  33. S. E. HiIlyard and J. Silcox, Ultramicroscopy 58, 6 (1995).

    Article  Google Scholar 

  34. H. Akatsu and I. Ohdomari, Applied Surf Science 41, 357 (1989).

    Article  Google Scholar 

  35. F. H. Baumann et al, Proc. MRS Spring Meet. Symp. C, 23 (2000).

    Google Scholar 

  36. S. M. Goodnick, D. K. Ferry, C. W. Wilmsen, Z. Liliental, D. Fathy and 0. L. Krivanek,Phys. Rev. B32, 8171 (1985).

    Google Scholar 

  37. M. Niwa, K. Okada and R. Sinclair, App. Surf. Science 100/101, 425 (1996).

    Article  CAS  Google Scholar 

  38. D. A. Muller, in Characterization and Metrology for ULSI Technology: 2000 International Conference, edited by D. G. Seiler and A. C. Diebold and E. Secula (ATP, New York, 2000).

    Google Scholar 

  39. J.M. Rosamilia et.al., ECS meeting, Sixth International Meeting of Cleaning Technology in Semicondutor Device Manufacturing (1999).

    Google Scholar 

  40. T. Hattori and H. N. H. K. Takahashi, Microelec. Eng. 48, 17 (1999).

    Article  CAS  Google Scholar 

  41. M. Fujimura, K. Inoue, H. Nohira, T. Hattori, Appl. Surf. Sci. 162, 62 (2000).

    Article  Google Scholar 

  42. G. Duscher, F. Banhart, H. Mullejans, S. J. Pennycook and M. Ruble, Microsc. And Microanalysis 3(2), 459 (1997).

    Google Scholar 

  43. G. Duscher, S. J. Pennycook, N. D. Browning, R. Rupangudi, C. Takoudis, H. J. Gao and R. Singh, in Characterization and Metrology for ULSI Technology: 1998 International Conference, edited by D. G. Seiler and A. C. Diebold and W. M. Bullis (AIP, New York, 1998).

    Google Scholar 

  44. G. Duscher, R. Buzcko, S. J. Pennycook and S. T. Pantelides, Mat. Res. Soc. Symp. Proc. 592, 15 (2000).

    Article  CAS  Google Scholar 

  45. S. J. Pennycook and D. E. Jesson, Phys. Rev. Lett. 64, 938 (1990).

    Article  CAS  Google Scholar 

  46. Z. Yu and J. Silcox, Private Communication.

    Google Scholar 

  47. R. F. Egerton, Electron Energy Loss Spetroscopy in the Electron Microscope, 2nd ed. (Plenum Press, New York, 1996).

    Google Scholar 

  48. C. Colliex and B. Jouffrey, Philos. Mag. 25, 491 (1972).

    Article  CAS  Google Scholar 

  49. J. E. Muller and J.W. Wilkins, Phys. Rev. B29, 4331 (1984).

    Google Scholar 

  50. D. A. Muller and J. Silcox, Ultramicroscopy 59, 195 (1995).

    Article  CAS  Google Scholar 

  51. D. A. Muller, D. A. Shashkov, R. Benedek, L. H. Yang, J. Silcox and D. N. Seidman, Phys. Rev. Lett. 80, 4741 (1998).

    Article  CAS  Google Scholar 

  52. G. E. Brown Jr. and G. A. Waychunas and J. Stohr and F. Sette, J. de Physique. Colloque C8 47, 685 (1986).

    Google Scholar 

  53. D. Wallis, P. H. Gaskell and R. Brydson, J. Microsc. 180, 307 (1995).

    Article  CAS  Google Scholar 

  54. S.D. Kosowsky, P.S. Pershan, K.S. Krish, J. Bevk, M.L. Green, D. Brasen, L.C. Feldman, P.K. Roy, Appl. Phys. Lett. 70, 3119 (1997).

    Article  CAS  Google Scholar 

  55. H. P. Hjalmarson, H. P. Buttner, J. D. Dow, Phys. Rev. B24, 6010 (1980).

    Google Scholar 

  56. R.W. Godby and M. Schliiter and L. J. Scham, Phys. Rev. B37, 10159 (1988).

    Google Scholar 

  57. E. K. Chang, M. Rohlfing and S. G. Louie, Phys. Rev. Lett. 85, 2613 (2000).

    Article  CAS  Google Scholar 

  58. M. S. Hybertsen and S. G. Louie, Phys. Rev. Lett. 55, 1418 (1985).

    Article  CAS  Google Scholar 

  59. Y. Xu and W. Y. Ching, Phys. Rev. B44, 11048 (1991).

    Google Scholar 

  60. R. Buczko, G. Duscher, S. J. Pennycook, and S. T. Pantelides, Phys. Rev. Lett. 85, 2168 (2000).

    Article  CAS  Google Scholar 

  61. H. Ma, S. H. Lin, R. W. Carpenter, P. Rice, 0. F. Sankey, J. App. Phys. 73, 7422 (1993).

    Article  CAS  Google Scholar 

  62. A. Zunger and A. Freeman, Phys. Rev. B16, 2901 (1977).

    Google Scholar 

  63. D. A. Muller, P. E. Batson and J. Silcox, Phys. Rev. B58, 11970 (1998).

    Google Scholar 

  64. R. Buczko, G. Duscher, S. Pennycook and S. Pantelides,submitted to Phys. Rev. Lett.

    Google Scholar 

  65. X. Weng, P. Rez and 0. Sankey, Phys. Rev. B40, 5694 (1989).

    Google Scholar 

  66. L. A. J. Garvie, P. Rez, J. R. Alvarez, P. R. Buseck, A. J. Craven, R. Brydson, Am. Mineralogist 85, 732 (2000).

    CAS  Google Scholar 

  67. S. T. Pantelides, Phys. Rev. B11, 2391 (1975).

    Google Scholar 

  68. S. M. Sze, Physics of Semiconductor Devices (Wiley, new York, 1981).

    Google Scholar 

  69. C. Jagannath, Z. W. Grabowski and A. K. Ramdas, Phys. Rev. B23, 2082 (1981).

    Google Scholar 

  70. P. E. Batson, Phys. Rev. B47, 6898 (1993).

    Google Scholar 

  71. A. Pasquarello, M. S. Hybertsen and R. Car, Phys. Rev. 68, 625 (1996).

    CAS  Google Scholar 

  72. K-0. Ng and D. Vanderbilt, Phys. Rev. B59, 10132 (1999).

    Google Scholar 

  73. Y. Tu and J. Tersoff, Phys. Rev. Lett. 84, 4393 (2000).

    Article  CAS  Google Scholar 

  74. M. M. Banaszak Holl, S. Lee, and F. R. McFeely, Appl. Phys. Lett. 65, 1097 (1994).

    Article  CAS  Google Scholar 

  75. A. Pasquarello, M. S. Hybertsen and R. Car, Nature 396, 58 (1998).

    Article  CAS  Google Scholar 

  76. G. Kresse and J. Furthmiiller, Comput. Mater. Sci. 6, 15 (1996); ibid, Phys. Rev. B54, 11169 (1996)

    Article  CAS  Google Scholar 

  77. E. Martinez and F. Yndurádin, Phys. Rev. B24, 5718 (1981).

    Google Scholar 

  78. P. OrdejOn and F. Yndurain, Phys. Rev. 43, 5718 (1991).

    Google Scholar 

  79. F. G. Bell and L. Ley, Phys. Rev. 37, 8383 (1988).

    Article  CAS  Google Scholar 

  80. A. P. Sutton, Electronic Structure of Materials (Clarendon Press, Oxford, 1993).

    Google Scholar 

  81. M. Aoki, Phys. Rev. Lett. 71, 3842 (1993).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Muller, D.A., Neaton, J.B. (2001). Evolution of the Interfacial Electronic Structure During Thermal Oxidation. In: Chabal, Y.J. (eds) Fundamental Aspects of Silicon Oxidation. Springer Series in Materials Science, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56711-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56711-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62583-1

  • Online ISBN: 978-3-642-56711-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics