Skip to main content

Transgenic Vegetable and Forage Brassica Species: Rape, Kale, Turnip and Rutabaga (Swede)

  • Chapter
Transgenic Crops II

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 47))

Abstract

The economically important Brassica genus contains about 85 species. The six cultivated Brassica species are interrelated with the three amphidiploids (B. napus, B. juncea and B. carinata) arising from interspecific hybridization between the three diploid species (B. oleracea, B. nigra and B. campestris; U 1935). In addition to many important vegetable species, Brassica includes oilseed (rape and turnip), vegetables and forage (turnip, swede, rape, kale) species. Turnips and swedes provide winter fodder for sheep and cattle (McNaughton 1976). In New Zealand, arable Brassica crops have been important for animal production since 1870. They are used to supplement pasture for sheep and cattle when pasture growth is not sufficient (Palmer 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arce P, Moreno M, Gutierrez M, Gebauer M, DellOrto P, Torres H, Acuna I, Oliger P, Venegas A, Jordana X, Kalazich J, Holuigue L (1999) Enhanced resistance to bacterial infection by Erwinia carotovora subsp. atroseptica in transgenic potato plants expressing the attacin or the cecropin SB-37 genes. Am J Potato Res 76:169–177

    Article  CAS  Google Scholar 

  • Barrell P, Conner T (1995) Minimal T-DNA vectors for plant transformation. 6th Australasian Gene Mapping Workshop and New Zealand Genetical Society Conference, 27 Nov-1 Dec, University of Otago, Dunedin, New Zealand, Abstr 43

    Google Scholar 

  • Borges MLV, Sequeira JC (1996) Soil solarization and phytosanitary problems of Brassica. Acta Hortic 407:461–468

    Google Scholar 

  • Chavadej S, Brisson N, McNeil IN, de Luca V (1994) Redirection of tryptophan leads to production of low indole glucosinolate canola. Proc Natl Acad Sci USA 91:2166–2170

    Article  PubMed  CAS  Google Scholar 

  • Christey MC (1997) Transgenic crop plants using Agrobacterium rhizogenes-mediated transformation. In: Doran PM (ed) Hairy roots: culture and applications. Harwood Academic Publishers, Amsterdam, pp 99–111

    Google Scholar 

  • Christey MC, Sinclair BK (1992) Regeneration of transgenic kale (Brassica oleracea var. acephala), rape (B. napus) and turnip (B. campestris var. rapifera) plants via Agrobacterium rhizogenes mediated transformation. Plant Sci 87:161–169

    Article  CAS  Google Scholar 

  • Christey MC, Sinclair BK (1993) Field-testing of Kapeti kale regenerated from Agrobacterium-induced hairy roots. NZ J Agric Res 36:389–392

    Article  Google Scholar 

  • Christey M, Sinclair BK, Braun RH (1994) Phenotype of transgenic Brassica napus and B. oleracea plants obtained from Agrobacterium rhizogenes mediated transformation. VIII Int Congr of Plant Tissue and Cell Culture, 12–17 June, Florence, Italy, p 157

    Google Scholar 

  • Christey MC, Sinclair BK, Braun RH, Wyke L (1997) Regeneration of transgenic vegetable Brassicas (Brassica oleracea and B. campestris) via Ri-mediated transformation. Plant Cell Rep 16:587–593

    Article  CAS  Google Scholar 

  • Christey MC, Braun RH, Kenel FO, Podivinsky E (1999a) Agrobacterium rhizogenes-mediated transformation of swede. Proc 10th Int Rapeseed Congr, 26–29 Sept, Canberra, Australia, CDROM

    Google Scholar 

  • Christey MC, Braun RH, Reader J (1999b) Field performance of transgenic vegetable brassicas (Brassica oleracea and B. rapa) transformed with Agrobacterium rhizogenes. SABRAO J Breed Gen 31(2):93–108

    Google Scholar 

  • Christey MC, Braun RH, Reader JK, Lambie JS, Forbes ME (1999c) Field testing transgenic Basta resistant forage kale and forage rape. Proc 10th Int Rapeseed Congr, 26–29 Sept, Canberra, Australia, CDROM

    Google Scholar 

  • Conner AJ, Christey MC (1994) Plant breeding and seed marketing options for the introduction of transgenic insect-resistant crops. Biocontrol Sci Technol 4:463–473

    Article  Google Scholar 

  • Dale PJ, Irwin JA, Scheffler JA (1993) The experimental and commercial release of transgenic crop plants. Plant Breed 111:1–22

    Article  CAS  Google Scholar 

  • Downs CG, Christey MC, Maddocks D, Seelye JF, Stevenson DG (1994a) Hairy roots of Brassica na us: I. Applied glutamine overcomes the effect of phosphinothricin treatment. Plant Cell Rep 14:37–40

    CAS  Google Scholar 

  • Downs CG, Christey MC, Davies KM, King GA, Seelye JF, Sinclair BK, Stevenson DG (1994b) Hairy roots of Brassica napus: II. Glutamine synthetase overexpression alters ammonia assimilation and the response to phosphinothricin. Plant Cell Rep 14:41–46

    Google Scholar 

  • Earle ED, Knauf VC (1999) Genetic engineering in Brassica. In: Gomez-Campo C (ed) Biology of Brassica cenospecies. Elsevier, Amsterdam, pp 287–313

    Chapter  Google Scholar 

  • Earle ED, Metz TD, Roush RT, Shelton AM (1996) Advances in transformation technology for vegetable Brassica. Acta Hortic 407:161–168

    CAS  Google Scholar 

  • Fuchs H, MD Sacristan (1996) Identification of a gene in Arabidopsis thaliana controlling resistance to clubroot (Plasmodiophora brassicae) and characterization of the resistance response. Mol Plant-Microbe Interact 9:91–97

    Article  CAS  Google Scholar 

  • Godwin I, Todd G, Ford-Lloyd B, Newbury HJ (1991) The effects of acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species. Plant Cell Rep 9:671–675

    Article  CAS  Google Scholar 

  • Grison R, Grezes-Besset B, Schneider M, Lucante N, Olsen L, Leguay J-J, Toppan A (1996) Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene. Nat Biotechnol 14:643–646

    Article  PubMed  CAS  Google Scholar 

  • Hoerner GR (1945) Crowngall of hops. Plant Dis Rep 29:98–110

    Google Scholar 

  • Holbrook LA, Miki BL (1985) Brassica grown gall tumourigenesis and in vitro of transformed tissue. Plant Cell Rep 4:329–332

    Article  Google Scholar 

  • Hu J, Quiros CF (1996) Application of molecular markers and cytogenetic stocks to Brassica genetics, breeding and evolution. Acta Hortie 407:79–85

    CAS  Google Scholar 

  • Hussain MM, Melcher U, Essenberg RC (1985) Infection of evacuolated turnip protoplasts with liposome-packaged cauliflower mosaic virus. Plant Cell Rep 4:58–62

    Article  Google Scholar 

  • Janssen B-J, Gardner RC (1989) Localised transient expression of GUS in leaf discs following cocultivation with Agrobacterium. Plant Mol Biol 14:61–72

    Article  Google Scholar 

  • Kado CI, Heskett MG, Langley RA (1972) Studies on Agrobacterium tumefaciens: characterization of strains ID135 and B6, and analysis of the bacterial chromosome, transfer RNA and ribosomes for tumor-inducing ability. Physiol Plant Pathol 2:47–57

    Article  CAS  Google Scholar 

  • Lefebvre DD (1990) Expression of mammalian metallothionein suppresses glucosinolate synthesis in Brassica campestris. Plant Physiol 93:522–524

    Article  PubMed  CAS  Google Scholar 

  • Li X-B, Mao H-Z, Bai Y-Y (1995) Transgenic plants of rutabaga (Brassica napobrassica) tolerant to pest insects. Plant Cell Rep 15:97–101

    Article  Google Scholar 

  • McNaughton IH (1976) Swedes and rapes Brassica napus (Cruciferae). In: Simmonds NW (ed) Evolution of crop plants. Longman, London, pp 53–56

    Google Scholar 

  • Mukhopadhyay A, Arumugam N, Nandakumar PBA, Pradhan AK, Gupta V, Pental D (1992) Agrobacterium-mediated genetic transformation of oilseed Brassica campestris: transformation frequency is strongly influenced by the mode of shoot regeneration. Plant Cell Rep 11:506–513

    Article  Google Scholar 

  • Nieuwhof M (1993) Cole crops. In: Traditional crop breeding practices: an historical review to serve as a baseline for assessing the role of modern biotechnology. OECD, Paris, pp 159–171

    Google Scholar 

  • Palaniswamy P (1996) Host plant resistance to insect pests of cruciferous crops with special reference to flea beetles feeding on canol a-a review. Acta Hortic 407:469–481

    Google Scholar 

  • Palmer TP (1983) Forage brassicas. In: Wratt GS, Smith HC (eds) Plant breeding in New Zealand. Butterworths, New Zealand, pp 63–70

    Google Scholar 

  • Paszkowski J, Pisan B, Shillito RD, Hohn T, Hohn B, Potrykus I (1986) Genetic transformation of Brassica campestris var. rapa protoplasts with an engineered cauliflower mosaic virus genome. Plant Mol Biol 6:303–312

    Article  CAS  Google Scholar 

  • Poulsen GB (1996) Genetic transformation of Brassica. Plant Breed 115:209–225

    Article  CAS  Google Scholar 

  • Pua E-C, Lee JEE (1995) Enhanced de novo shoot morphogenesis in vitro by expression of anti-sense 1-aminocyclopropane-1-carboxylate oxidase in transgenic mustard plants. Planta 196:69–76

    Article  CAS  Google Scholar 

  • Puddephat IJ, Riggs TJ, Fenning TM (1996) Transformation of Brassica oleracea L.: a critical review. Mol Breed 2:185–210

    Article  Google Scholar 

  • Quiros CF (1998) Molecular markers and their application to genetics, breeding and evolution of Brassica. J Jpn Soc Hortic Sci 67(6):1180–1185

    Article  CAS  Google Scholar 

  • Radke SE, Turner JC, Facciotti D (1992) Transformation and regeneration of Brassica rapa using Agrobacterium tumefaciens. Plant Cell Rep 11:499–505

    Article  Google Scholar 

  • Rouan D, Montané M-H, Alibert G, Teissié J (1991) Relationship between protoplast size and critical field strength in protoplast electropulsing and application to reliable DNA uptake in Brassica. Plant Cell Rep 10:139–143

    Article  CAS  Google Scholar 

  • Tanaka N, Hayakawa M, Mano Y, Ohkawa H, Matsui C (1985) Infection of turnip and radish storage roots with Agrobacterium rhizogenes. Plant Cell Rep 4:74–77

    Article  Google Scholar 

  • Thompson KF (1976) Cabbages, kales etc. Brassica oleracea (Cruciferae) In: Simmonds NW (ed) Evolution of crop plants. Longman, London, pp 49–52

    Google Scholar 

  • Toriyama K, Stein IC, Nasrallah ME, Nasrallah JB (1991) Transformation of Brassica oleracea with an S-locus gene from B. campestris changes the self-incompatibility phenotype. Theor Appl Genet 81:769–776

    Article  CAS  Google Scholar 

  • UN (1935) Genome-analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–453

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Christey, M.C., Braun, R.H. (2001). Transgenic Vegetable and Forage Brassica Species: Rape, Kale, Turnip and Rutabaga (Swede). In: Bajaj, Y.P.S. (eds) Transgenic Crops II. Biotechnology in Agriculture and Forestry, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56901-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56901-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63130-6

  • Online ISBN: 978-3-642-56901-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics