Skip to main content

Symplectic Multiple-Time-Stepping Integrators for Quantum-Classical Molecular Dynamics

  • Conference paper
Computational Molecular Dynamics: Challenges, Methods, Ideas

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 4))

Abstract

The overall Hamiltonian structure of the Quantum-Classical Molecular Dynamics model makes — analogously to classical molecular dynamics - symplectic integration schemes the methods of choice for long-term simulations. This has already been demonstrated by the symplectic PICKABACK method [19]. However, this method requires a relatively small step-size due to the high-frequency quantum modes. Therefore, following related ideas from classical molecular dynamics, we investigate symplectic multiple-time-stepping methods and indicate various possibilities to overcome the step-size limitation of PICKABACK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.I. Arnold. Mathematical methods of classical mechanics. Springer-Verlag, 1978.

    Google Scholar 

  2. G. Benettin and A. Giorgilli. On the Hamiltonian interpolation of near to the identity symplectic mappings with application to symplectic integration algorithms. J. Statist Phys., 74: 1117–1143, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  3. H.J.C. Berendsen and J. Mavri. Quantum simulation of reaction dynamics by density matrix evolution. J. Phys. Chem., 97: 13464–13468, 1993.

    Article  Google Scholar 

  4. J.J. Biesiadecki and R.D. Skeel. Dangers of multiple-time-step methods. J. Comput. Phys., 109: 318–328, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  5. F.A. Bornemann, P. Nettesheim, and Ch. Schütte. Quantum-classical molecular dynamics as an approximation for full quantum dynamics. J. Chem. Phys., 105(3): 1074–1083, 1996.

    Article  Google Scholar 

  6. F.A. Bornemann and Ch. Schütte. On the singular limit of the quantumclassical molecular dynamics model. Preprint SC 97–07, ZIB Berlin, 1997. Submitted to SIAM J. Appl. Math.

    Google Scholar 

  7. A. García-Vela, R.B. Gerber, and D.G. Imre. Mixed quantum wave packet/classical trajectory treatment of the photodissociation process ArHCl → Ar+H+Cl. J. Chem. Phys., 97: 7242–7250, 1992.

    Article  Google Scholar 

  8. R.B. Gerber, V. Buch, and M.A. Ratner. Time-dependent self-consistent field approximation for intramolecular energy transfer. J. Chem. Phys., 66: 3022–3030, 1982.

    Article  Google Scholar 

  9. S.K. Gray and D.E. Manolopoulos. Symplectic integrators tailored to the timedependent Schrödinger equation. J. Chem. Phys., 104: 7099–7112, 1996.

    Article  Google Scholar 

  10. M. Hochbruck and Ch. Lubich. A bunch of time integrators for quantum/classical molecular dynamics, this volume.

    Google Scholar 

  11. E. Hairer and Ch. Lubich. The life-span of backward error analysis for numerical integrators. Numer. Math., 76: 441–462, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Nettesheim, F.A. Bornemann, B. Schmidt, and Ch. Schütte. An explicit and symplectic integrator for quantum-classical molecular dynamics. Chemical Physics Letters, 256: 581–588, 1996.

    Article  Google Scholar 

  13. P. Nettesheim and Ch. Schütte. Numerical integrators for quantum-classical molecular dynamics, this volume.

    Google Scholar 

  14. S. Reich. Backward error analysis for numerical integrators. SIAM J. Numer. Anal., to appear, 1999.

    Google Scholar 

  15. S. Reich. Preservation of adiabatic invariants under symplectic discretization. Applied Numerical Mathematics, to appear, 1998.

    Google Scholar 

  16. U. Schmitt and J. Brinkmann. Discrete time-reversible propagation scheme for mixed quantum classical dynamics. Chem. Phys., 208: 45–56, 1996.

    Article  Google Scholar 

  17. U. Schmitt. Gemischt klassisch-quantenmechanische Molekulardynamik im Liouville-Formalismus. Ph.D. thesis (in german), Darmstadt, 1997.

    Google Scholar 

  18. J.M. Sanz-Serna and M.P. Calvo. Numerical Hamiltonian Systems. Chapman and Hall, London, 1994.

    Google Scholar 

  19. M. Tuckerman, B.J. Berne, and G. Martyna. Reversible Multiple Time Scale Molecular Dynamics. J. Chem. Phys., 97: 1990–2001, 1992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nettesheim, P., Reich, S. (1999). Symplectic Multiple-Time-Stepping Integrators for Quantum-Classical Molecular Dynamics. In: Deuflhard, P., Hermans, J., Leimkuhler, B., Mark, A.E., Reich, S., Skeel, R.D. (eds) Computational Molecular Dynamics: Challenges, Methods, Ideas. Lecture Notes in Computational Science and Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58360-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58360-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63242-9

  • Online ISBN: 978-3-642-58360-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics