Skip to main content

Conformational Transitions of Proteins from Atomistic Simulations

  • Conference paper
Computational Molecular Dynamics: Challenges, Methods, Ideas

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 4))

Abstract

The function of many important proteins comes from their dynamic properties, and their ability to undergo conformational transitions. These may be small loop movements that allow access to the protein’s active site, or large movements such as those of motor proteins that are implicated with muscular extension. Yet, in spite of the increasing number of three-dimensional crystal structures of proteins in different conformations, not much is known about the driving forces of these transitions. As an initial step towards exploring the conformational and energetic landscape of protein kinases by computational methods, intramolecular energies and hydration free energies were calculated for different conformations of the catalytic domain of cAMP-dependent protein kinase (cAPK) with a continuum (Poisson) model for the electrostatics. In this paper, we will put the previous results into context and discuss possible extensions into the dynamic regime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amadei, A., Linssen, A.B.M., Berendsen, H.J.C.: Essential Dynamics of Proteins. Proteins 17 (1993) 412–425

    Article  Google Scholar 

  2. Baisera, M., Stepaniants, S., Izrailev, S., Oono, Y., Schulten, K.: Reconstructing Potential Energy Functions from Simulated Force-Induced Unbinding Processes. Biophys. J. 73 (1997) 1281–1287

    Article  Google Scholar 

  3. Case, D.A.: Normal mode analysis of protein dynamics. Curr. Op. Struct. Biol. 4 (1994) 285–290

    Article  Google Scholar 

  4. Elamrani, S., Berry, M.B., Phillips Jr., G.N., McCammon, J.A.: Study of Global Motions in Proteins by Weighted Masses Molecular Dynamics: Adenylate Kinase as a Test Case. Proteins 25 (1996) 79–88

    Article  Google Scholar 

  5. Elcock, A.H., Potter, M.J., McCammon, J.A.: Application of Poisson-Boltzmann Solvation Forces to Macromolecular Simulations. In “Computer Simulation of Biomolecular Systems,” Vol. 3, A.J. Wilkinson et al. eds., ESCOM Science Publishers B.V., Leiden

    Google Scholar 

  6. Gerstein, M., Lesk, A.M., Chothia, C: Structural Mechanisms for Domain Movements in Proteins. Biochemistry 33 (1994) 6739–6749

    Article  Google Scholar 

  7. Gilson, M.K., Davis, M.E., Luty, B.A., McCammon, J.A.: Computation of Electrostatic Forces on Solvated Molecules Using the Poisson-Boltzmann Equation. J. Phys. Chem. 97 (1993) 3591–3600

    Article  Google Scholar 

  8. Grubmüller, H.: Predicting Slow Structural Transitions in Macromolecular Systems-Conformational Flooding. Phys. Rev. E. 52 (1994) 2893–2906

    Article  Google Scholar 

  9. Hayward, S., Kitao, A., Gō, N.: Harmonic and anharmonic aspects in the dynamics of BPTI: A normal mode analysis and principal component analysis. Prot. Sci. 3 (1994) 936–943

    Article  Google Scholar 

  10. Head-Gordon, T., Brooks, C.L.: Virtual rigid body dynamics. Biopol. 31 (1991) 77–100

    Article  Google Scholar 

  11. Helms, V., McCammon, J.A.: Kinase Conformations: A computational study of the effect of ligand binding. Prot. Sci. 6 (1997) 2336–2343

    Article  Google Scholar 

  12. Jardetzky, O.: Protein dynamics and conformational transitions in allosteric proteins. Prog. Biophys. Mol. Biol. 65 (1996) 171–219

    Article  Google Scholar 

  13. Madura, J.D., Briggs, J.M., Wade, R.C., Davis, M.E., Luty, B.A., Hin, A., Antosiewicz, J., Gilson, M.K., Bagheri, B., Scott, L.R., McCammon, J.A.: Electrostatics and Diffusion of Molecules in Solution: Simulations with the University of Houston Brownian Dynamics Program. Comp. Phys. Comm. 91 (1995) 57–95

    Article  Google Scholar 

  14. McCammon, J.A., Gelin, B.R., Karplus, M., Wolynes, P.G.: The hinge-bending mode in lysozyme. Nature 262 (1976) 325–326

    Article  Google Scholar 

  15. Moldyn Inc., 955 Massachusetts ave, 5th Floor, Cambridge, MA 02139-3180, USA

    Google Scholar 

  16. McCammon, J.A., Harvey, S.C.: Dynamics of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1987).

    Book  Google Scholar 

  17. Oleander, R., Elber, R.: Calculation of classical trajectories with a very large time step: Formalism and numerical examples. J. Chem. Phys. 105 (1996) 9299–9315

    Article  Google Scholar 

  18. Schlitter, J., Engels, M., Krüger, P.: Targeted molecular dynamics: A new approach for searching pathways of conformational transitions. J. Mol. Graph. 12 (1994) 84–89

    Article  Google Scholar 

  19. Vonrhein, C., Schlauderer, G.J., Schulz, G.E.: Movie of the structural changes during a catalytic cycle of nucleoside monophosphate kinases. Structure 3 (1995) 483–490.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Helms, V., McCammon, J.A. (1999). Conformational Transitions of Proteins from Atomistic Simulations. In: Deuflhard, P., Hermans, J., Leimkuhler, B., Mark, A.E., Reich, S., Skeel, R.D. (eds) Computational Molecular Dynamics: Challenges, Methods, Ideas. Lecture Notes in Computational Science and Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58360-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58360-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63242-9

  • Online ISBN: 978-3-642-58360-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics