Skip to main content

Multiaxial Failure Criteria

  • Chapter
Ceramics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 36))

  • 865 Accesses

Abstract

In the usual tests to determine strength or lifetime under tension, bending or compression loading a uniaxial stress state is present. In components very often multi-axial stresses occur. Also under uniaxial external loading multiaxial stresses are possible, for instance in notched components. Rotating structures and components under internal pressure exhibit multiaxial stresses. Also thermal stresses are in general multiaxial. In this section, failure criteria under multiaxial loading are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sauter, J., Kuhn, P. (1991): Formulierung einer neuen Theorie zur Bestimmung des Fließ- und Sprödbruchversagens bei statischer Belastung unter Angabe der Übergangsbedingung, Z. angew. Math. Mech. 71, T383 - T387.

    Google Scholar 

  2. Takagi, J., Shaw, M.C. (1983): Brittle fracture initiation under complex stress states, Trans. ASME, J. Engng. Ind. 105, 143–149.

    Article  Google Scholar 

  3. Shaw, M.C., Avery, J.P. (1986): Tensile fracture loci for brittle material containing spherical voids, Trans. ASME, J. Engng. Mater. Technol. 108, 222–229.

    Article  Google Scholar 

  4. Timoshenko, S.P., Goodier, J.N. (1970): Theory of Elasticity, McGraw-Hill Kogakusha, Japan.

    Google Scholar 

  5. Paul, B., Mirandy, L. (1976): An improved fracture criterion for three-dimensional stress state, Trans. ASME, J. Engng Mater. Technol. 98, 159–163.

    Article  Google Scholar 

  6. Petrovic, J.J. (1985): Mixed-mode fracture of hot-pressed Si3N4, J. Am. Ceram. Soc. 68, 348–355.

    Article  CAS  Google Scholar 

  7. Shetty, S.K., Rosenfield, A.R., Duckworth, W.H. (1987): Mixed-mode fracture in biaxial stress state: Application of the diametral-compression (brazilian disk) test, Engng. Fract. Mech. 26, 825–840.

    Article  Google Scholar 

  8. Alpa, G. (1984): On a statistical approach to brittle rupture for multiaxial states of stress, Engng. Fract. Mech. 19, 881–901.

    Article  Google Scholar 

  9. Batdorf, S.B., Crose, J.G. (1974): A statistical theory for the fracture of brittle structures subjected to nonuniform stress, J. Appl. Mech. 41, 459–461.

    Article  Google Scholar 

  10. Batdorf, S.B., Heinisch, H.L. (1978): Weakest link theory reformulated for arbitrary fracture criterion, J. Am. Ceram. Soc. 61, 355–358.

    Article  Google Scholar 

  11. Evans, A.G. (1978): A general approach for the statistical analysis of multiaxial fracture, J. Am. Ceram. Soc. 61, 302–308.

    Article  CAS  Google Scholar 

  12. Matsuo, Y. (1981): A probabilistic analysis of fracture loci under bi-axial stress state, Bull. JSME 24, 290–294.

    Article  Google Scholar 

  13. Gyekenyesi, J.P., Nemeth, N.N. (1987): Surface flaw reliability analysis of ceramic components with the SCARE finite element postprocessor program, Trans. ASME, J. Engng. Gas Turbines and Powers 109, 247–281.

    Google Scholar 

  14. Lemon, J. (1988): Statistical approaches to failure of ceramics reliability assessment, J. Am. Ceram. Soc. 71, 106–112.

    Article  Google Scholar 

  15. Heger, A., Brückner-Foit, A., Munz, D. (1991): STAU — ein Programm zur Berechnung der Ausfallwahrscheinlichkeit mehrachsig beanspruchter keramischer Komponenten als Post-Prozessor für Finite-Elemente-Programme, Internal Report, Institute for Reliability and Failure Analysis, University of Karlsruhe, Germany.

    Google Scholar 

  16. Thiemeier, T., Brückner-Foit, A., Kölker, H. (1991): Influence of the fracture criterion on the failure prediction of ceramics loaded in biaxial flexure, J. Am. Ceram. Soc. 74, 48–52.

    Article  Google Scholar 

  17. Brückner-Foit, A., Heger, A., Munz, D. (1996): On the contribution of notches to the failure probability of ceramic components, J. Europ. Ceram. Soc. 16, 1027–1034.

    Article  Google Scholar 

  18. Giovan, M.N., Sines, G. (1981): Strength of a ceramic at high temperatures under biaxial and uniaxial tension, J. Am. Ceram. Soc. 64, 68–73.

    Article  CAS  Google Scholar 

  19. Schmitt, W., Blank, K., Schönbrunn, G. (1983): Experimentelle Spannungsanalyse zum Doppelringversuch, Sprechsaal 116, 397–405.

    Google Scholar 

  20. Fessier, H., Fricker, D.C. (1984): A theoretical analysis of the ring-on-ring loading disc test, J. Am. Ceram. Soc. 67, 582–588.

    Article  Google Scholar 

  21. Soltész, U., Richter, H., Kienzier, R. (1987): The concentric-ring test and its application for determining the surface strength of ceramics, in High Tech Ceramics, Elsevier Science Publishers, Amsterdam 149–158.

    Google Scholar 

  22. Chao, L.Y., Shetty, D.K. (1991): Reliability analysis of structural ceramics subjected to biaxial flexure, J. Am. Ceram. Soc. 74, 333–344.

    Article  CAS  Google Scholar 

  23. Shetty, K.D., Rosenfield, A.R., McGuire, P., Duckworth, W.H. (1980): Biaxial flexure test for ceramics, Am. Ceram. Soc. Bulletin 59, 1193–1197.

    Google Scholar 

  24. Shetty, K.D., Rosenfield, A.R., McGuire, Bansal, G.K., Duckworth, W.H. (1981): Biaxial fracture studies of a glass ceramic, J. Am. Ceram. Soc. 64, 1–4.

    Google Scholar 

  25. de With, G, Wagemans, H.H.M. (1989): Ball-on-ring test revisited, J. Amer. Ceram. Soc. 72, 1538–1541.

    Article  Google Scholar 

  26. Carneiro, F.L.L.B., Barcellos, A. (1949): Résistance à la traction des bétons, Instituto Nacional de Technologia, Rio de Janeiro.

    Google Scholar 

  27. Wright, P.J.F. (1955): Comments on an indirect tensile test on concrete cylinders, Magazine of Concrete Research 7, 87–96.

    Article  Google Scholar 

  28. Shaw, M.C., Braiden, P.M., De Salvo, G.J. (1975): The disk test for brittle materials, Trans. ASME, J. Basic Engng. Industry, 77–87.

    Google Scholar 

  29. Hondros, G. (1959): The evaluation of Poisson’s ratio and the modulus of materials of a low tensile resistance by the Brazilian (indirect tensile) test with particular reference to concrete, Australian J. Appl. Sci. 10, 243–268.

    CAS  Google Scholar 

  30. Marion, R. H., Johnstone, J.K. (1977): A parametric study of the diametral compression test for ceramics, Am. Ceram. Soc. Bull. 56, 998–1002.

    CAS  Google Scholar 

  31. Spriggs, R.M., Brissette, L.A., Vasilos, T. (1964): Tensile strength of polycrystal-line ceramics by the diametral compression test, J. Mater. Res. Stand. 4, 218.

    Google Scholar 

  32. Szendi-Horvath, G. (1980): Fracture toughness determination of brittle materials using small to extremely small specimens, Engng. Fract. Mech. 13, 955–961.

    Article  Google Scholar 

  33. Petroski, H.J., Ojdrovic, R.P. (1987): The concrete cylinder: Stress analysis and failure modes, Int. J. Fract. 53, 263–279.

    Article  Google Scholar 

  34. Brückner-Foit, A., Fett, T., Munz, D., Schirmer, K. (1997): Discrimination of multiaxiality criteria with the Brazilian disc test, J. Europ. Ceram. Soc. 17, 689–696.

    Article  Google Scholar 

  35. Sato, S., Awaji, H., Kawamata, K., Kurumada, A., Oku, T. (1987): Fracture criteria of reactor graphite under multiaxial stresses, Nuclear Engng. Design 103, 291–300.

    CAS  Google Scholar 

  36. Ely, R.E. (1972): Strength of titania and aluminum silicate under combined stresses, J. Am. Ceram. Soc. 55, 347–350.

    Article  CAS  Google Scholar 

  37. Adams, M., Sines, G. (1976): Determination of biaxial compressive strength of a sintered alumina ceramic, J. Am. Ceram. Soc. 59, 300–304.

    Article  CAS  Google Scholar 

  38. Broutman, L.J., Krishnakuman, S.M., Mallick, P.K. (1970): Effects of combined stresses on fracture of alumina and graphite, J. Am. Ceram. Soc. 53, 649–654.

    Article  CAS  Google Scholar 

  39. Stout, M.G., Petrovic, J.J. (1984): Multiaxial loading fracture of A12O3 tubes: I, experiments, J. Am. Ceram. Soc. 67, 14–18.

    Article  Google Scholar 

  40. Ikeda, K., Igaki, H. (1984): Fracture criterion for alumina ceramics subjected to triaxial stresses, J. Am. Ceram. Soc. 67, 538–544.

    Article  CAS  Google Scholar 

  41. Ikeda, K., Igaki, H., Kuroda, T. (1986): Fracture strength of alumina ceramics under uniaxial and triaxial stress states, Am. Ceram. Soc. Bull. 65, 683–688.

    Google Scholar 

  42. Schirmer, K.S. (1995): Entwicklung von Versagenskriterien fur keramische Bauteile unter mehrachsiger Belastung, Thesis, University of Karlsruhe, Germany, Fortschritt-Berichte VDI Nr 174, Reihe 18, VDI-Verlag, Düsseldorf, Germany.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Munz, D., Fett, T. (1999). Multiaxial Failure Criteria. In: Munz, D., Fett, T. (eds) Ceramics. Springer Series in Materials Science, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58407-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58407-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63580-9

  • Online ISBN: 978-3-642-58407-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics