Skip to main content

Abstract

The microneurographic technique allows the researcher to observe and monitor the continuous ongoing neural activity of peripheral nerves in awake human subjects. It enables the study of both multiunit and single neuronal activities in practically all kinds of nerve fibers regardless of size or myelinization. The scientist has the possibility to correlate neuronal activity with peripheral stimuli, vegetative and motoric activity, as well as subjective experience. The technique is a relatively new one (first publication by Hagbarth and Vallbo in 1967), but has already attracted neuroscientists working in many different areas of the nervous system, in both normal and pathological conditions. During the 30 or so years the technique has been available, it has enabled major scientific advances in many of these areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aniss AM, Diener HC, Hore J, Burke D, Gandevia SC (1990) Reflex activation of muscle spindles in human pretibial muscles during standing. J Neurophysiol 64: 671–679

    PubMed  CAS  Google Scholar 

  • Burke D, Hagbarth KE, Löfstedt L, Wallin BG (1976) The responses of human muscle spindle endings to vibration of non-contracting muscles. J Physiol (London) 261: 673–693

    CAS  Google Scholar 

  • Burke D, Hagbarth K-E, Wallin BG (1977) Reflex mechanisms in Parkinsonian rigidity. Scand J Rehabil Med 9: 15–23

    PubMed  CAS  Google Scholar 

  • Burke D (1997) Unit identification, sampling bias and technical issues in microneurographic recordings from muscle spindle afferents. J Neurosci Methods 74: 137–144

    Article  PubMed  CAS  Google Scholar 

  • Delius W, Hagbarth K-E, Hongell A, Wallin G (1972) General characteristics of sympathetic activity in human muscle nerves. Acta Physiol Scand 84: 65–81

    Article  PubMed  CAS  Google Scholar 

  • Edin BB, Vallbo AB (1990) Classification of human muscle stretch receptor afferents; a Bayesian approach. J Neurophysiol 63: 1314–1322

    PubMed  CAS  Google Scholar 

  • Edin BB (1992) Quantitative analysis of strain sensitivity in human mechanoreceptors from hairy skin. J Neurophysiol. 67: 1105–1113

    PubMed  CAS  Google Scholar 

  • Gandevia SC, Hales J P (1997) The methodology and scope of human microneurography. J Neurosci Methods 74: 123–136

    Article  PubMed  CAS  Google Scholar 

  • Gandevia SC, Burke D (1992) Does the nervous system depend on kinesthetic information to control natural limb movements? Behav Brain Sci. 15: 614–632

    Article  Google Scholar 

  • Goodwin GM, McCloskey DI, Matthews PCB (1972) The contribution of muscle afferents to kinesthesia shown by vibration-induced illusions of movement and by the effect of paralysing joint afferents. Brain 95: 705–748

    Article  PubMed  CAS  Google Scholar 

  • Hagbarth KE, Vallbo AB (1967) Mechanoreceptor activity recorded percutaneously with semimicroelectrodes in human peripheral nerves. Acta Physiol Scand. 69: 121–122

    Article  PubMed  CAS  Google Scholar 

  • Hagbarth K-E, Wallin G, Löfstedt L (1973) Muscle spindle responses to stretch in normal and spastic subjects. Scand J Rehabil Med 5: 156–159

    PubMed  CAS  Google Scholar 

  • Hagbarth K-E (1979) Extereoceptive, proprioceptive, and sympathetic activity recorded with microelectrodes from human peripheral nerves. Mayo Clin Proc 54: 353–365

    PubMed  CAS  Google Scholar 

  • Hallin RG (1990) Microneurography in relation to intraneural topography: somatotopic organi-sation of median nerve fascicles in humans. J Neurol Neurosurg Psychiat 53: 736–744

    Article  PubMed  CAS  Google Scholar 

  • Hallin RG, Torebjörk HE (1974) Single unit sympathetic activity in human skin nerves during rest and various manoeuvres. Acta Physiol Scand 92: 303–317

    Article  PubMed  CAS  Google Scholar 

  • Hallin RG, Wu G (1998) Protocol for microneurography with concentric needle electrodes. Brain Res Prot 2: 120–132

    Article  CAS  Google Scholar 

  • Inglis JT, Leeper JB, Burke D, Gandevia SC (1996) Morphology of action potentials recorded from human nerves using microneurography. Exp Brain Res 110: 308–314

    Article  PubMed  CAS  Google Scholar 

  • Jansen RF (1990) The reconstruction of individual spike trains from extracellular multineuron recordings using a neural network emulation program. J Neurosci Methods 35: 203–213

    Article  PubMed  CAS  Google Scholar 

  • Johansson RS (1976) Skin mechanoreceptors in human hand: receptive field characteristics. In: Zotterman Y (ed) Sensory functions of the skin in primates: With special reference to man. Pergamon Press, Oxford, pp 475–487

    Google Scholar 

  • Johansson RS, Vallbo AB (1983) Tactile sensory coding in the glabrous skin of the human hand. Trends Neurosci 6: 27–32

    Article  Google Scholar 

  • Kreiter AK, Aertsen MHJ, Gerstein GL (1989) A low-cost single-board solution for real-time, unsupervised waveform classification of multineuron recordings. J Neurosci Methods 30: 59–69

    Article  PubMed  CAS  Google Scholar 

  • Macefield VG, Gandevia SC, Burke D (1990) Perceptual responses to microstimulation of single afferents innervating joints, muscles and skin of the human hand. J Physiol (Lond) 429: 113–129

    CAS  Google Scholar 

  • Macefield VG, Gandevia SC, Bigland-Ritchie B, Gorman RB, Burke D (1993) The firing rates of human motoneurones voluntarily activated in the absence of muscle afferent feedback. J Physiol (Lond) 471: 429–443

    CAS  Google Scholar 

  • Mirfakhraei K, Horch K (1994) Classification of action potentials in multi-unit intrafasicular recordings using neural network pattern recognition techniques. IEEE Transactions Biomed Engin 41: 89–91

    Article  CAS  Google Scholar 

  • Ochoa JL, Torebjörk JR (1983) Sensations evoked by intraneural microstimulation of single mechanoreceptor units innervating the human hand. J Physiol (Lond) 342: 633–654

    CAS  Google Scholar 

  • Ochoa JL, Torebjörk JR (1989) Sensations evoked by intraneural microstimulation of C nociceptor fibers in human skin nerves. J Physiol (Lond) 415: 583–599

    CAS  Google Scholar 

  • Oghalai JS, Street WN, Rhode WS (1994) A neural network-based spike discriminator. J Neurosci Methods 54: 9–22

    Article  PubMed  CAS  Google Scholar 

  • Ribot E, Roll JP, Vedel JP (1986) Efferent discharges recorded from single skeletomotor and fusimotor fibres in man. J Physiol (London) 375: 251–268

    CAS  Google Scholar 

  • Roll JP, Vedel JP (1982) Kinesthetic role of muscle afferents in man, studied by tendon vibration and microneurography. Exp Brain Res 47: 177–190

    Article  PubMed  CAS  Google Scholar 

  • Roll JP, Vedel JP, Ribot E (1989) Alteration of proprioceptive messages induced by tendon vibration in man: microneurographic study. Exp Brain Res 76: 213–222

    Article  PubMed  CAS  Google Scholar 

  • Roll JP, Gilhodes JC (1995) Proprioceptive sensory codes mediating movement trajectory percep-tion: human hand vibration-induced drawing illusions. Can J Physiol Pharmacol 73: 295–304

    Article  PubMed  CAS  Google Scholar 

  • Rothwell JC, Gandevia SC, Burke D (1990) Activation of fusimotor neurones by motor cortical stimulation in human subjects. J Physiol (Lond) 431: 743–756

    CAS  Google Scholar 

  • Salganicoff M, Sarna M, Sax L, Gerstein GL (1988) Unsupervised waveform classification for multi-neuron recordings: a real-time, software-based system. Algorithms and implementation. J Neurosci Methods 25: 181–187

    Article  PubMed  CAS  Google Scholar 

  • Schmidt EM (1984a) Instruments for sorting neuroelectric data: a review. J Neurosci Methods 12: 1–24

    Article  CAS  Google Scholar 

  • Schmidt EM (1984b) Computer separation of multi-unit neuroelectric data: a review. J Neurosci Methods 12: 95–111

    Article  CAS  Google Scholar 

  • Sundlof G, Wallin BG (1978) Human muscle nerve sympathetic activity at rest: Relationship to blood pressure and age. J Physiol (Lond) 274: 621–637

    CAS  Google Scholar 

  • Szumski AJ, Burg D, Struppler A, Velho F (1974) Activity of musde spindles during muscle twitch and clonus in normal and spastic human subjects. Electroencephal Clin Neurophysiol 37: 589–597

    Article  CAS  Google Scholar 

  • Torebjörk, HE, Hallin, RG (1976) Skin receptors supplied by unmyelinated (C) fibres in man. In: Zotterman Y (eds) Sensory functions of the skin in primates: With special reference to man. Pergamon Press, Oxford, pp 475–487

    Google Scholar 

  • Vallbo AB, Johansson RS (1984) Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Human Neurobiol 3: 3–14

    CAS  Google Scholar 

  • Wallin BG, Konig U. (1976) Changes of skin nerve sympathetic activity during induction of general anesthesia with thiopentone in man. Brain Res 103: 157–160

    Article  PubMed  CAS  Google Scholar 

  • Öhberg F, Johansson H, Bergenheim M, Pedersen J. Djupsjöbacka M (1995) A neural network approach to real-time spike discrimination during simultaneous recording from several multiunit nerve filaments. J Neurosc Methods 64: 181–187

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bergenheim, M., Roll, JP., Ribot-Ciscar, E. (1999). Microneurography in Humans. In: Windhorst, U., Johansson, H. (eds) Modern Techniques in Neuroscience Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58552-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58552-4_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63643-1

  • Online ISBN: 978-3-642-58552-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics