Skip to main content

Zusammenfassung

Abgesehen von der Lichtstreuung in Lösung decken die verschiedenen Methoden zur Teilchengrößenbestimmung unterschiedliche Größenbereiche ab (Abb. 8.1). Die wichtigste mikroskopische Methode ist die Elektronenmikroskopie. Zukunfts-weisend ist die Röntgenmikroskopie, weil die Teilchen in situ in ihrer wäßrigen Umgebung untersucht werden können (Kap. 8.3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Allen T (1993) Particle size measurement. Chapman and Hall, London

    Google Scholar 

  • Allen T (1997) Particle size measurements. Chapman and Hall, London, vol 1, vol 2

    Google Scholar 

  • Apfel U, Grunder R und Ballauff (1994) A turbidity study of particle interaction in latex sus-pensions. Colloid Polym Sci 272: 820–829

    Article  CAS  Google Scholar 

  • Arner EC und Kirkland JJ (1992) Sedimentation field flow fractionation. In: Harding SE; Rowe AJ; Horton JC (eds) Analytical ultracentrifugation in biochemistry and polymer science. pp 208–227

    Google Scholar 

  • Auweter H und Horn D (1985) Fiber-optical quasi-elastic light scattering of concentrated dispersions. J Coll Interf Sci 105: 399–409

    Article  CAS  Google Scholar 

  • Bailey L, Keall M, Audibert A und Lecourtier J (1994) Effect of clay/polymer interactions on shale stabilization during drilling. Langmuir 10: 1544–1549

    Article  CAS  Google Scholar 

  • Blau P und Zollars RL (1996) Sedimentation field-flow fractionation of nonspherical particles. J Coll Interf Sci 183: 476–483

    Article  CAS  Google Scholar 

  • Bolt GH und Warkentin BP (1958) The negative adsorption of anions by clay suspensions. Kolloid Z 156: 41–46

    Article  CAS  Google Scholar 

  • Chan DYC, Pashley RM und Quirk JP (1984) Surface potentials derived from co-ion exclusion measurements on homoionic montmorillonite and illite. Clays Clay Min 32: 131–138

    Article  CAS  Google Scholar 

  • Chang FRC und Sposito G (1994) The electrical double layer of a disk-shaped clay mineral par-ticle: effect of particle size. J Coll Interf Sci 163: 19–27

    Article  CAS  Google Scholar 

  • Chang FRC und Sposito G (1996) The electrical double layer of a disk-shaped clay mineral particle: effects of electrolyte properties and surface charge density. J Coll Interf Sci 178: 555–564

    Article  CAS  Google Scholar 

  • Edwards DG, Posner AM und Quirk JP (1965) Repulsion of chloride ions by negatively charged clay surfaces. I, II, III. Trans Faraday Soc 61: 2808–2815; 2816–2819; 2819–2823

    Google Scholar 

  • Edwards DG und Quirk JP (1962) Repulsion of chloride by montmorillonite. J Coll Sci 17: 872–882

    Article  CAS  Google Scholar 

  • Eliçabe GE und Garciá-Rubio LH (1989) Latex particle size distribution from turbidimetry using inversion techniques. J Coll Interf Sci 129: 192–200

    Article  Google Scholar 

  • Esker van den MWJ und Pieper JHA (1975) Latex particle size by light absorption. In: van Ol-phen H; Mysels KJ (eds) Physical chemistry: enriching topics from colloid and surface science. Theorex, La Jolla, California, pp 175–180

    Google Scholar 

  • Ferreiro EA, Helmy AK und de Bussetti SG (1995) Interaction of Fe-oxyhydroxide colloidal particles with montmorillonite. Clay Min 30: 195–200

    Article  CAS  Google Scholar 

  • Filella M, Zhang J, Newman ME und Buffle J (1997) Analytical applications of photon correla-tion spectroscopy for size distribution measurements of natural colloidal suspensions: capabi-lities and limitations. Colloids Surfaces A 120: 27–46

    Article  CAS  Google Scholar 

  • Giddings JC, Ratanathanawongs SK, Barman BN, Moon MH, Liu G, Tjelta BL und Hansen ME (1994) Characterization of colloidal and particulate silica by field flow fractionation. In: Bergna HE (ed) The colloid chemistry of silica. Adv chew ser 234. Am Chem Soc, Wa-shington, pp 309–340

    Chapter  Google Scholar 

  • Gregg SJ und Sing KSW (1982) Adsorption, surface area and porosity. Acad Press, London; siehe auch Auflage von 1967

    Google Scholar 

  • Hinds IC, Ridler PJ und Jennings BR (1996) Electric birefringence for monotoring size changes in clay suspensions. Clay Min 31: 549–556

    Article  CAS  Google Scholar 

  • Hofmann U (1962) Die chemischen Grundlagen der griechischen Vasenmalerei. Angew Chem 74: 397–442

    Article  Google Scholar 

  • Horn D, Auweter H, Ditter W und Eisenlauer J (1986) Laser-optical methods for the characterization of disperse systems. In: Parfitt GD; Patsis AV (eds) Organic coatings. Science and technology. M Dekker, New York, Basel, vol 8, pp 251–277

    Google Scholar 

  • Hul van den HJ (1982) Negative adsorption of co-ions from spherical particles. J Coll Interf Sci 86: 173–177

    Article  Google Scholar 

  • Hul van den HJ (1983) Estimation of outer Helmholtz plane potentials from negative adsorption of co-ions. J Coll Interf Sci 92: 217–221

    Article  Google Scholar 

  • Hunter RJ (1991) Foundations of colloid science vol I. Clarendon Press, Oxford

    Google Scholar 

  • Hunter RJ (1993) Introduction to modern colloid science. Oxford Univ Press, Oxford

    Google Scholar 

  • Jahn W und Strey R (1988) Microstructure of microemulsions by freeze fracture electron mi-croscopy. J Phys Chem 92: 2294–2301

    Article  CAS  Google Scholar 

  • Jasmund K und Lagaly G (1993) Tonminerale und Tone. Struktur, Eigenschaften, Anwendung und Einsatz in Industrie und Umwelt. Steinkopff Verlag, Darmstadt

    Book  Google Scholar 

  • Jennings BR (1993) Size and thickness measurement of polydisperse clay samples. Clay Min 28: 485–494

    Article  CAS  Google Scholar 

  • Jennings BR und Parslow K (1988) Particle size measurement: the equivalent spherical diame-ter. Proc Roy Soc London A 419: 137–149

    Article  CAS  Google Scholar 

  • Karlsson O, Hassander H und Wesslén B (1995) Particle size measurements of heterogeneous film-forming latices. J Colloid Polym Sci 273: 496–504

    Article  CAS  Google Scholar 

  • Killmann E, Sapuntzjis P und Maier H (1992) Dynamic light scattering for characterization of latices. Makromol Chem, Macromol Symp 61: 42–58

    Article  CAS  Google Scholar 

  • Lange H (1968) Bestimmung von Teilchengrößen aus Trübung und Brechungsinkrement. Koll Z Z Polym 223: 24–30

    Article  CAS  Google Scholar 

  • Lange H (1995) Comparative test of methods to determine particle size and particle size distri-bution in the submicron range. Part Part Syst Charact 12: 148–157

    Article  CAS  Google Scholar 

  • Lyklema J (1991) Fundamentals of interface and colloid science. I. Fundamentals. Acad Press, London

    Google Scholar 

  • McFadyen P und Fairhurst D (1993) High-resolution particle size analysis from nanometers to microns. Clay Min 28: 531–537

    Article  CAS  Google Scholar 

  • Niemeyer J, Thieme J, Guttmann P, Wilhein T, Rudolph D und Schmahl G (1994) Direct imaging of aggregates in aqueous clay-suspensions by X-ray microscopy. Progr Colloid Polym Sci 95: 139–142

    Article  CAS  Google Scholar 

  • Noll W (1975) Bemalung antiker Keramik. Angew Chem 87: 639–651

    Article  CAS  Google Scholar 

  • Noll W (1980) Chemie vor unserer Zeit: antike Pigmente. Chemie uns Zeit 14: 37–43

    Article  CAS  Google Scholar 

  • Noll W (1982) Techniken der Dekoration antiker Keramik. Ber DKG, 17–25

    Google Scholar 

  • Oakley DM, Jennings BR, Waterman DR und Fairey RC (1982) An electrooptic birefringence fine-particle sizer. J Phys E Sci Instrum 15: 1077–1082

    Article  CAS  Google Scholar 

  • Parslow K und Jennings BR (1986) Simultaneous size and thickness measurements for heterogeneous micrometre-sized particles. J Phys D Appl Phys 19: 1233–1243

    Article  CAS  Google Scholar 

  • Provder T (ed) (1991) Particle size distribution. II. ACS Symp Ser 472. Amer Chem Soc, Washington

    Book  Google Scholar 

  • Ristori GG, Sparvoli E, Landi L und Martelloni C (1989) Measurement of specific surface areas of soils by p-nitrophenol adsorption. Appl Clay Sci 4: 521–532

    Article  Google Scholar 

  • Schoeman BJ, Sterte J und Otterstedt JE (1994) The synthesis of colloidal zeolite hydroxysodalite sols by homogeneous nucleation. Zeolites 14: 208–216

    Article  Google Scholar 

  • Schoeman BJ, Sterte J und Otterstedt JE (1995) Dynamic light scattering applied to the synthesis of colloidal zeolite. J Porous Mat 1: 185–198

    Article  CAS  Google Scholar 

  • Schofield RK (1947) Calculation of surface areas from measurements of negative adsorption. Nature 160: 408–410

    Article  Google Scholar 

  • Schofield RK (1949) Calculation of surface areas of clays from measurements of negative adsorption. Trans Brit Ceram Soc 48: 207–213

    CAS  Google Scholar 

  • Schofield RK und Samson HR (1954) Flocculation of kaolinite due to the attraction of oppositively charged crystal faces. Discuss Faraday Soc 18: 135–145

    Article  CAS  Google Scholar 

  • Schramm LL und Kwak JCT (1982) a) Influence of exchangeable cation composition on the size and shape of montmorillonite particles in dilute suspensions. Clay Clay Min 30: 40–48

    Article  CAS  Google Scholar 

  • Schramm LL und Kwak JCT (1982) b) Interactions in clay suspensions: the distribution of ions in suspension and the influence of tactoid formation. Colloids Surfaces 3: 43–60

    Article  Google Scholar 

  • Siedentopf H und Zsigmondy R (1903) l. Über die Sichtbarmachung und Größenbestimmung ultramikroskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser. Ann Phys 10 (4. F): 1–39

    CAS  Google Scholar 

  • Slepetys RA und Cleland AI (1993) Determination of shape of kaolin pigment particles. Clay Min 28: 495–508

    Article  CAS  Google Scholar 

  • Thieme J, Niemeyer J, Guttmann P, Wilhein T, Rudolph D und Schmahl G (1994) X-ray microscopy studies of aqueous colloidal systems. Progr Colloid Polym Sci 95: 135–138

    Article  CAS  Google Scholar 

  • Thomas JC und Fairhurst D (1991) High resolution particle size analysis of coating materials. In: Sharma MK; Micale El (eds) Surface phenomena and fine particles in water-based coatings and printing technology. Plenum Press, New York, pp 213–224

    Chapter  Google Scholar 

  • Tributh H und Lagaly G (1986) Aufbereitung und Identifizierung von Boden-und Lagerstätten-tonen. II. Korngrößenanalyse und Gewinnung von Tonsubfraktionen. GIT-Fachzeitschrift für das Laboratorium 30: 771–776

    Google Scholar 

  • Uzgiris EE (1981) Laser doppler spectroscopy: applications to cell and particle electrophoresis. Advan Coll Interf Sci 14: 75–171

    Article  Google Scholar 

  • Vali H und Bachmann L (1988) Ultrastructure and flow behavior of colloidal smectite dispersions. J Coll Interf Sci 126: 278–291

    Article  CAS  Google Scholar 

  • Verdurmen EM, Albers JG und German AL (1994) Polybutadiene latex particle size distribution analysis utilizing a disk centrifuge. Colloid Polym Sci 272: 57–63

    Article  CAS  Google Scholar 

  • Weiner BB, Tscharnuter W und Fairhurst D (1994) Accurate particle sizing of high density materials to 10 nm using an X-ray disc centrifuge with a moving source detector. In: Bose A; Dowding RJ (eds) Tungsten and Refractory Metals. Proceedings of the 2nd int conf on tungsten and refractory metals. Metal Powder Industries Federation, Princeton, NJ, vol 2, pp 727–735

    Google Scholar 

  • Williams PS, Xu Y, Pierluigi R und Giddings JC (1997) Colloid characterization by sedimentation field-flow fractionation: correction for particle-wall interaction. Ann Chem 69: 349–360

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lagaly, G., Schulz, O., Zimehl, R. (1997). Teilchengröße. In: Dispersionen und Emulsionen. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-59248-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59248-5_8

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-7985-1087-6

  • Online ISBN: 978-3-642-59248-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics