Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 270))

Abstract

For more than a century, the ability to sense endotoxin (later known also as lipopolysaccharide; LPS) stood as the archetypal innate immune response: even before the phrase ‘innate immunity’ became popular. Yet the mechanism by which LPS initiated a signal remained unknown. The problem was solved in 1998 by positional cloning, which revealed that Toll-like receptor (TLR) 4, one of ten mammalian paralogues with homology to theDrosophila protein Toll, is the central component of the LPS receptor. During the 3 years that followed, gene knockout work supported the view that the TLRs perceive a number of indispensable molecular structures shared by diverse representatives of the microbial world. The highly specific LPS-sensing function of TLR4 is remarkable for its prevalence inMammalia, which to the present time is the only class of the phylumChordata known to have a gene encoding TLR4, and known to display exquisite sensitivity to LPS. The fact that LPS signals are elicited through a single biochemical pathway has raised important pharmacotherapeutic opportunities as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-KB by Toll-like receptor 3. Nature 413: 732–8

    Article  PubMed  CAS  Google Scholar 

  • Anderson KV, Jurgens G, Nusslein-Volhard C (1985) Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell 42: 779–89

    Article  PubMed  CAS  Google Scholar 

  • Bauer S, Kirschning CJ, Hacker H, Redecke V, Hausmann S, Akira S, Wagner H, Lipford GB (2001) Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci USA 98: 9237–42

    Article  PubMed  CAS  Google Scholar 

  • Biswas C, Mandal C (1999) The role of amoebocytes in endotoxin-mediated coagulation in the innate immunity of Achatina fulica snails. Scand J Immunol 49: 131–8

    Article  PubMed  CAS  Google Scholar 

  • Boivin A (1946) Traveaux recents sur la constitution chimique et sur les proprietes biologiques des antigenes bacteriens. Schweiz Z Pathol Bakteriol 9: 505–41

    PubMed  CAS  Google Scholar 

  • Boivin A, Mesrobeanu L (1935) Recherches usr les antigenes somatiques et sur les endotoxines des bacteries. Rev Immunol 1: 553–69

    CAS  Google Scholar 

  • Chaudhary PM, Ferguson C, Nguyen V, Nguyen O, Massa HF, Eby M, Jasmin A, Trask BJ, Hood L, Nelson PS (1998) Cloning and characterization of two Toll/Interleukin-1 receptor-like genes TIL3 and TIL4: evidence for a multi-gene receptor family in humans. Blood 91: 4020–7

    PubMed  CAS  Google Scholar 

  • Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F (1999) Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 274: 10689–92

    Article  PubMed  CAS  Google Scholar 

  • Coutinho A, Forni L, Melchers F, Watanabe T (1977) Genetic defect in responsiveness to the B cell mitogen lipopolysaccharide. Eur J Immunol 7: 325–8

    Article  PubMed  CAS  Google Scholar 

  • Coutinho A, Meo T (1978) Genetic basis for unresponsiveness to lipopolysaccharide in C57BL/10Cr mice. Immunogenetics 7: 17–24

    Article  PubMed  CAS  Google Scholar 

  • Cross A, Asher L, Seguin M, Yuan L, Kelly N, Hammack C, Sadoff J, Gemski P Jr (1995) The importance of a lipopolysaccharide-initiated, cytokine- mediated host defense mechanism in mice against extraintestinally invasive Escherichia coli. J Clin Invest 96: 676–86

    Article  PubMed  CAS  Google Scholar 

  • Ding AH, Porteu F, Sanchez E, Nathan CF (1990) Downregulation of tumor necrosis factor receptors on macrophages and endothelial cells by microtubule depolymerizing agents. J Exp Med 171: 715–27

    Article  PubMed  CAS  Google Scholar 

  • Ding AH, Porteu F, Sanchez E, Nathan CF (1990) Shared actions of endotoxin and taxol on TNF receptors and TNF release. Science 248: 370–2

    Article  PubMed  CAS  Google Scholar 

  • Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408: 740–5

    Article  PubMed  CAS  Google Scholar 

  • Heppner G, Weiss DW (1965) High susceptibility of strain A mice to endotoxin and endotoxin-red blood cell mixtures. J Bacteriol 90: 696–703

    PubMed  CAS  Google Scholar 

  • Inamori K, Koori K, Mishima C, Muta T, Kawabata S (2000) A horseshoe crab receptor structurally related to Drosophila Toll. J Endotoxin Res 6: 397–9

    PubMed  CAS  Google Scholar 

  • Kawasaki K, Akashi S, Shimazu R, Yoshida T, Miyake K, Nishijima M (2000) Mouse toll-like receptor 4.MD-2 complex mediates lipopolysaccharide-mimetic signal transduction by Taxol. J Biol Chem 275:2251–4

    Article  PubMed  CAS  Google Scholar 

  • Kirschning CJ, Wesche H, Merrill AT, Rothe M (1998) Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med 188: 2091–7

    Article  PubMed  CAS  Google Scholar 

  • Kuhns DB, Long Priel DA, Gallin JI (1997) Endotoxin and IL-1 hyporesponsiveness in a patient with recurrent bacterial infections. J Immunol 158: 3959–64

    PubMed  CAS  Google Scholar 

  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann J A (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86: 973–83

    Article  PubMed  CAS  Google Scholar 

  • Lien E, Means TK, Heine H, Yoshimura A, Kusumoto S, Fukase K, Fenton MJ, Oikawa M, Qureshi N, Monks B, Finberg RW, Ingalls RR, Golenbock DT (2000) Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J Clin Invest 105: 497–504

    Article  PubMed  CAS  Google Scholar 

  • Luderitz O, Galanos C, Lehmann V, Nurminen M, Rietschel ET, Rosenfelder G, Simon M, Westphal O (1973) Lipid A: chemical structure and biological activity. J Infect Dis 128: 29

    Article  Google Scholar 

  • Luderitz O, Staub AM, Westphal O (1966) Immunochemistry of O and R antigens of Salmonella and related Enterobacteriaceae. Bacteriol Rev 30: 192–255

    PubMed  CAS  Google Scholar 

  • Macela A, Stulik J, Hernychova L, Kroca M, Krocova Z, Kovarova H (1996) The immune response against Francisella tularensis live vaccine strain in Lpsn and Lpsd mice. FEMS Immunol Med Microbiol 13: 235–8

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov R, Preston-Hurlburt P, Janeway CA, Jr. (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394-7 Michalek SM, Moore RN, McGhee JR, Rosenstreich DL, Mergenhagen SE (1980) The primary role of lymphoreticular cells in the mediation of host responses to bacterial endotoxin. J Infec Dis 141: 55–63

    Google Scholar 

  • Michalek SM, Moore RN, McGhee JR, Rosenstreich DL, Mergenhagen SE (1980) The primary lymphoreticular cells in the mediation of host responses to bacterial endotoxin. J Infec Dis 14

    Google Scholar 

  • Mitchell CR, Kempton JB, Scott-Tyler B, Trune DR (1997) Otitis media incidence and impact on the auditory brain stem response in lipopolysaccharide-nonresponsive C3H/HeJ mice. Otolaryngol Head Neck Surg 117: 459–64

    Article  PubMed  CAS  Google Scholar 

  • Miura Y, Miyake K, Yamashita Y, Shimazu R, Copeland NG, Gilbert DJ, Jenkins NA, Inazawa J, Abe T, Kimoto M (1996) Molecular cloning of a human RP105 homologue and chromosomal localization of the mouse and human RP105 genes (Ly64 and LY64). Genomics 38: 299–304

    Article  PubMed  CAS  Google Scholar 

  • Miura Y, Shimazu R, Miyake K, Akashi S, Ogata H, Yamashita Y, Narisawa Y, Kimoto M (1998) RP105 is associated with MD-1 and transmits an activation signal in human B cells. Blood 92: 2815–22

    PubMed  CAS  Google Scholar 

  • Nomura N, Miyajima N, Sazuka T, Tanaka A, Kawarabayasi Y, Sato S, Nagase T, Seki N, Ishikawa K, Tabata S (1994) Prediction of the coding sequences of unidentified human genes. I. The coding sequences of 40 new genes (KIAA0001-KIAA0040) deduced by analysis of randomly sampled cDNA clones from human immature myeloid cell line KG-1. DNA Res 1: 27–35

    Article  PubMed  CAS  Google Scholar 

  • O’Brien AD, Rosenstreich DL, Scher I, Campbell GH, MacDermott RP, Formal SB (1980) Genetic control of susceptibility to Salmonella typhimurium in mice: role of the LPS gene. J Immunol 124:20-4 Pfeiffer R (1892) Untersuchungen iiber das Choleragift. Z Hygiene 11: 393–412

    Google Scholar 

  • Pfeiffer R (1892) Untersuchugen über das Choleragift, Z Hygiene 11:393–412

    Article  Google Scholar 

  • Poltorak A, He X, Smirnova I, Liu M-Y, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg MA, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282: 2085–8

    Article  PubMed  CAS  Google Scholar 

  • Poltorak A, Ricciardi-Castagnoli P, Citterio A, Beutler B (2000) Physical contact between LPS and Tlr4 revealed by genetic complementation. Proc Nat Acad Sci USA 97: 2163–2167

    Article  PubMed  CAS  Google Scholar 

  • Poltorak A, Smirnova I, Clisch R, Beutler B (2000) Limits of a deletion spanning Tlr4 in C57BL/10ScCr mice. J Endotoxin Res 6: 51–56

    Article  PubMed  CAS  Google Scholar 

  • Poltorak A, Smirnova I, He XL, Liu MY, Van Huffel C, McNally O, Birdwell D, Alejos E, Silva M, Du X, Thompson P, Chan EKL, Ledesma J, Roe B, Clifton S, Vogel SN, Beutler B (1998) Genetic and physical mapping of the Lps locus- identification of the toll-4 receptor as a candidate gene in the critical region. Blood Cells Molecules & Diseases 24: 340–55

    Article  CAS  Google Scholar 

  • Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF (1998) A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA 95: 588–93

    Article  PubMed  CAS  Google Scholar 

  • Schromm AB, Lien E, Henneke P, Chow JC, Yoshimura A, Heine H, Latz E, Monks BG, Schwartz DA, Miyake K, Golenbock DT (2001) Molecular genetic analysis of an endotoxin nonresponder mutant cell line: a point mutation in a conserved region of MD-2 abolishes endotoxin-induced signaling. J Exp Med 194: 79–88

    Article  PubMed  CAS  Google Scholar 

  • Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189: 1777–1782

    Article  PubMed  CAS  Google Scholar 

  • Taguchi T, Mitcham JL, Dower SK, Sims JE, Testa JR (1996) Chromosomal localization of TIL, a gene encoding a protein related to the Drosophila transmembrane receptor Toll, to human chromosome 4pl4. Genomics 32: 486–8

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S (1999) Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 11: 443–451

    Article  PubMed  CAS  Google Scholar 

  • Tobias PS, Soldau K, Ulevitch RJ (1986) Isolation of a lipopolysaccharide-binding acute phase reactant from rabbit serum. J Exp Med 164: 777–93

    Article  PubMed  CAS  Google Scholar 

  • Watson J, Kelly K, Largen M, Taylor BA (1978) The genetic mapping of a defective LPS response gene in C3H/HeJ mice. J Immunol 120: 422–4

    PubMed  CAS  Google Scholar 

  • Watson J, Riblet R, Taylor BA (1977) The response of recombinant inbred strains of mice to bacterial lipopolysaccharides. J Immunol 118: 2088–93

    PubMed  CAS  Google Scholar 

  • Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC (1990) CD 14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249: 1431–3

    Article  PubMed  CAS  Google Scholar 

  • Wright SD, Tobias PS, Ulevitch RJ, Ramos RA (1989) Lipopolysaccharide (LPS) binding protein opsonizes LPS-bearing particle for recognition by a novel receptor on macrophages. J Exp Med 170: 1231–41

    Article  PubMed  CAS  Google Scholar 

  • Yang R-B, Mark MR, Gray A, Huang A, Xie MH, Zhang M, Goddard A, Wood WI, Gurney AL, Godowski PJ (1998) Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signaling. Nature 395: 284–8

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S, Goto Y, Miyamoto H, Fujio H, Mizuguchi Y (1991) Association of Lps gene with natural resistance of mouse macrophages against Legionella pneumophila. FEMS Microbiol Immunol 4: 51–6

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beutler, B. (2002). TLR4 as the Mammalian Endotoxin Sensor. In: Beutler, B., Wagner, H. (eds) Toll-Like Receptor Family Members and Their Ligands. Current Topics in Microbiology and Immunology, vol 270. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59430-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59430-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63975-3

  • Online ISBN: 978-3-642-59430-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics