Skip to main content

Ion Balance in the Lepidopteran Midgut and Insecticidal Action of Bacillus thuringiensis

  • Chapter
Biochemical Sites of Insecticide Action and Resistance

Abstract

The use of Bacillus thuringiensis(Bt) for insect control ranks as one of the more notable achievements in the effort to develop safe and environmentally benign pesticides as alternatives to synthetic chemicals. Numerous strains of the organism have been investigated for their potential as biological insecticides in agriculture and forestry against insect defoliators and in vector control against mosquitoes and blackflies (Dulmage and cooperators 1981; Feitelson et al. 1992; Becker and Margalit 1993; Keller and Langenbruch 1993; Navon 1993; van Frankenhuyzen 1993,2000). To date, Bt-based products are the most widely used biopesticides, although their share of the total commercial insecticide market (1–2%) is still very small (Harris 1997; Schnepf et al. 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angus TA (1954) A bacterial toxin paralysing silkworm larvae. Nature 173:545–546.

    PubMed  CAS  Google Scholar 

  • Angus TA (1956a) Association of toxicity with protein-crystalline inclusions of Bacillus sotto Ishiwata. Can J Microbiol 2:122–131.

    PubMed  CAS  Google Scholar 

  • Angus TA (1956b) Extraction, purification, and properties of Bacillus sotto toxin. Can J Microbiol 2:416–426.

    PubMed  CAS  Google Scholar 

  • Angus TA (1968) Similarity of effect of valinomycin and Bacillus thuringiensis parasporal protein in larvae of Bombyx mori. J Invertebr Pathol 11:145–146.

    Google Scholar 

  • Angus TA, Heimpel AM (1956) An effect of Bacillus sotto on the larvae of Bombyx mori. Can Entomol 88:138–139.

    Google Scholar 

  • Aranda E, Sanchez J, Peferoen M, Giiereca L, Bravo A (1996) Interactions of Bacillus thuringiensis crystal proteins with the midgut epithelial cells of Spodoptera frugiperda (Lepidoptera: Noctuidae) J Invertebr Pathol 68:203–212.

    PubMed  CAS  Google Scholar 

  • Aronson AI, Geng C, Wu L (1999) Aggregation of Bacillus thuringiensis CrylA toxins upon binding to target insect larval midgut vesicles. Appl Environ Microbiol 65:2503–2507.

    PubMed  CAS  Google Scholar 

  • Azuma M, Takeda S, Yamamoto H, Endo Y, Eguchi M (1991) Goblet cell alkaline phosphatase in silkworm midgut epithelium: its entity and role as an ATPase. J Exp Zool 258:294 302.

    Google Scholar 

  • Azuma M, Harvey WR, Wieczorek (1995) Stoichiometry of K+/H+ antiport helps to explain extracellular pH 11 in a model epithelium. FEBS Lett 361:153–156.

    PubMed  CAS  Google Scholar 

  • Baines D, Schwartz JL, Sohi S, Dedes J, Pang A (1997) Comparison of the response of midgut epithelial cells and cell lines from lepidopteran larvae to Cryl A toxins from Bacillus thuringiensis. J Insect Physiol 43:823–831.

    PubMed  CAS  Google Scholar 

  • Becker N, Margalit J (1993) Use of Bacillus thuringiensis israelensis against mosquitoes and black flies. In: Entwistle PF, Cory JS, Bailey MJ, Higgs S (eds) Bacillus thuringiensis, an environmental biopesticide: theory and practice. Wiley, Chichester, pp 147–170 Berenbaum M (1980) Adaptive significance of midgut pH in larval Lepidoptera. Am Nat 115:138–146.

    Google Scholar 

  • Bernhard K, Jarrett P, Meadows M, Butt J, Ellis DJ, Roberts GM, Pauli S, Rodgers P, Burges HD (1997) Natural isolates of Bacillus thuringiensis: worldwide distribution, characterization, and activity against insect pests. J Invertebr Pathol 70:59–68.

    Google Scholar 

  • Biggin PC, Sansom MSP (1996) Simulation of voltage-dependent interactions of α-helical peptides with lipid bilayers. Biophys Chem 60:99–110.

    PubMed  CAS  Google Scholar 

  • Bravo A (1997) Phylogenetic relationships of Bacillus thuringiensis δ-endotoxin family proteins and their functional domains. J Bacteriol 179:2793–2801.

    PubMed  CAS  Google Scholar 

  • Bravo A, Jansens S, Peferoen M (1992a) Immunocytochemical localization of Bacillus thuringiensis insecticidal crystal proteins in intoxicated insects. J Invertebr Pathol 60:237–246.

    CAS  Google Scholar 

  • Bravo A, Hendrickx K, Jansens S, Peferoen M (1992b) Immunocytochemical analysis of specific binding of Bacillus thuringiensis insecticidal crystal proteins to lepidopteran and coleopteran midgut membranes. J Invertebr Pathol 60:247–253.

    CAS  Google Scholar 

  • Carroll J, Ellar DJ (1993) An analysis of Bacillus thuringiensis δ-endotoxin action on insect midgut-membrane permeability using a light-scattering assay. Eur J Biochem 214:771–778.

    PubMed  CAS  Google Scholar 

  • Carroll J, Ellar DJ (1997) Analysis of the large aqueous pores produced by a Bacillus thuringiensis protein insecticide in Manduca sexta midgut-brush-border-membrane vesicles. Eur J Biochem 245:797–804.

    PubMed  CAS  Google Scholar 

  • Castagna M, Shayakul C, Trotti D, Sacchi VF, Harvey WR, Hediger MA (1998) Cloning and characterization of a potassium-coupled amino acid transporter. Proc Natl Acad Sci USA 95:5395–5400.

    PubMed  CAS  Google Scholar 

  • Chao AC, Koch AR, Moffett DF (1989) Active chloride transport in isolated posterior midgut of tobacco hornworm (Manduca sexta). Am J Physiol 257:R752–R761.

    PubMed  CAS  Google Scholar 

  • Chao AC, Moffett DF, Koch A (1991) Cytoplasmic pH and goblet cavity pH in the posterior midgut of the tobacco hornworm Manduca sexta. J Exp Biol 155:403–414.

    Google Scholar 

  • Chaufaux J, Marchal M, Gilois N, Jehanno I, Buisson C (1997) Recherche de souches naturelles du Bacillus thuringiensis dans différents biotopes, à travers le monde. Can J Microbiol 43:337–343.

    CAS  Google Scholar 

  • Chen XJ, Lee MK, Dean DH (1993) Site-directed mutations in a highly conserved region of Bacillus thuringiensis l δ-endotoxin affect inhibition of short circuit current across Bombyx mori midguts. Proc Natl Acad Sci USA 90:9041–9045.

    PubMed  CAS  Google Scholar 

  • Choma CT, Surewicz WK, Carey PR, Pozsgay M, Raynor T, Kaplan H (1990) Unusual proteolysis of the protoxin and toxin from Bacillus thuringiensis: structural implications. Eur J Biochem 189:523–527.

    PubMed  CAS  Google Scholar 

  • Cioffi M (1979) The morphology and fine structure of the larval midgut of a moth (Manduca sexta) in relation to active ion transport. Tissue Cell 11:467–479.

    PubMed  CAS  Google Scholar 

  • Cioffi M, Harvey WR (1981) Comparison of potassium transport in three structurally distinct regions of the insect midgut. J Exp Biol 91:103–116.

    CAS  Google Scholar 

  • Cioffi M, Wolfersberger. MG (1983) Isolation of separate apical, lateral and basal plasma membrane from cells of an insect epithelium. A procedure based on tissue organization and ultrastructure. Tissue Cell 15:781–803.

    CAS  Google Scholar 

  • Clairmont FR, Milne RE, Pham VT, Carrière MB, Kaplan H (1998) Role of DNA in the activation of the Cryl A insecticidal crystal protein from Bacillus thuringiensis. J Biol Chem 273:9292–9296.

    PubMed  CAS  Google Scholar 

  • Cooksey KE (1971) The protein crystal toxin of Bacillus thuringiensis: biochemistry and mode of action. In: Burges HD, Hussey NW (eds) Microbial control of insects and mites. Academic Press, London, pp 247–274.

    Google Scholar 

  • Crawford DN, Harvey WR (1988) Barium and calcium block Bacillus thuringiensis subspecies kurstaki δ-endotoxin inhibition of potassium current across isolated midgut of larval Manduca sexta. J Exp Biol 137:277–286.

    PubMed  CAS  Google Scholar 

  • Crickmore N, Ziegler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean DH (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807–813.

    PubMed  CAS  Google Scholar 

  • Dean DH, Rajamohan F, Lee MK, Wu SJ, Chen XJ, Alcantara E, Hussain SR (1996) Probing the mechanism of action of Bacillus thuringiensis insecticidal proteins by site-directed mutagenesis B, a minireview. Gene 179:111–117.

    PubMed  CAS  Google Scholar 

  • Deaton LE (1984) Tissue K+-stimulated ATPase and HC03–stimulated ATPase in the tobacco hornworm, Manduca sexta. Insect Biochem 14:109–114.

    CAS  Google Scholar 

  • de Maagd RA, Kwa MSG, van der Klei H, Yamamoto T, Schipper B, Vlak JM, Stiekema WJ, Bosch D (1996) Domain III substitution in Bacillus thuringiensis delta δ-endotoxin CryI A (b) results in superior toxicity for Spodoptera exigua and altered membrane protein recognition. Appi Environ Microbiol 62:1537–1543.

    Google Scholar 

  • de Maagd RA, Bakker PL, Masson L, Adang MJ, Sangadala S, Stiekema W, Bosch D (1999) Domain III of the Bacillus thuringiensis delta δ-endotoxin CryI Ac is involved in binding to Manduca sexta brush border membranes and to its purified aminopeptidase N. Mol Microbiol 31:463–471.

    PubMed  Google Scholar 

  • Denolf P, Jansens S, Peferoen M, Degheele D, Van Rie J (1993) Two different Bacillus thuringiensis delta δ-endotoxin receptors in the midgut brush border membrane of the European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Pyralidae). Appi Environ Microbiol 59:1828–1837.

    CAS  Google Scholar 

  • Dow JAT (1984) Extremely high pH in biological systems: a model for carbonate transport. Am J Physiol 246:R633–R636.

    PubMed  CAS  Google Scholar 

  • Dow JAT (1992) pH gradients in lepidopteran midgut. J Exp Biol 172:355–375.

    PubMed  CAS  Google Scholar 

  • Dow JAT, Harvey WR (1988) Role of midgut electrogenic K+ pump potential difference in regulating lumen K+ and pH in larval Lepidoptera. J Exp Biol 140:455–463.

    PubMed  CAS  Google Scholar 

  • Dow JAT, Peacock JM (1989) Microelectrode evidence for the electrical isolation of goblet cell cavities in Manduca sexta middle midgut. J Exp Biol 143:101–114.

    Google Scholar 

  • Dow JAT, Gupta BL, Hall TA, Harvey WR (1984) X-ray microanalysis of elements in frozen hydrated sections of an electrogenic K+ transport system: the posterior midgut of tobacco hornworm (Manduca sexta) in vivo and in vitro. J Membr Biol 77:223–241.

    PubMed  CAS  Google Scholar 

  • Dulmage HT, Cooperators (1981) Insecticidal activity of isolates of Bacillus thuringiensis and their potential for pest control. In: Burges HD (ed) Microbial control of pests and plant diseases 1970–1980. Academic Press, London, pp 193–222.

    Google Scholar 

  • Endo Y, Nishiitsutsuji-Uwo J (1980) Mode of action of Bacillus thuringiensis δ-endotoxin histopathological changes in the silkworm midgut. J Invertebr Pathol 36:90–103.

    CAS  Google Scholar 

  • Endo Y, Nishiitsutsuji-Uwo J (1981) Mode of action of Bacillus thuringiensis δ-endotoxin: ultra- structural changes of midgut epithelium of Pieris, Lymantria and Ephestia larvae. Appi Entomol Zool 16:231–241.

    Google Scholar 

  • English LH, Cantley LC (1985) Delta δ-endotoxin inhibitsRb+uptake, lowers cytoplasmic pH and inhibits a K+-ATPase in Manduca sexta CHE cells. J Membr Biol 85:199–204.

    PubMed  CAS  Google Scholar 

  • English LH, Readdy TL, Bastían AE (1991) Delta δ-endotoxin-induced leakage of 86Rb+-K-and H20 from phospholipid vesicles is catalyzed by reconstituted midgut membrane. Insect Biochem 21:177–184.

    CAS  Google Scholar 

  • Escriche B, De Decker N, Van Rie J, Jansens S, Van Kerkhove E (1998) Changes in permeability of brush border membrane vesicles from Spodoptera littoralis midgut induced by insecticidal crystal proteins from Bacillus thuringiensis. Appl Environ Microbiol 64:1563–1565.

    PubMed  CAS  Google Scholar 

  • Fast PG (1981) The crystal toxin of Bacillus thuringiensis. In: Burges HD (ed) Microbial control of pests and plant diseases 1970–1980. Academic Press, London, pp 223–248.

    Google Scholar 

  • Fast PG, Angus TA (1965) Effects of parasporal inclusions of Bacillus thuringiensis var. sotto Ishiwata on the permeability of the gut wall of Bombyx mori (Linnaeus) larvae. J Invertebr Pathol 7:29–32.

    CAS  Google Scholar 

  • Fast PG, Donaghue TP (1971) The δ-endotoxin of Bacillus thuringiensis. II. On the mode of action. J Invert Pathol 18:135–138.

    CAS  Google Scholar 

  • Fast PG, Morrison IK (1972) The 1 δ-endotoxin of Bacillus thuringiensis. IV. The effect of. endotoxin on ion regulation by midgut tissue of Bombyx mori larvae. J Invertebr Pathol 20:208–211.

    CAS  Google Scholar 

  • Fast PG, Murphy DW, Sohi SS (1978) Bacillus thuringiensis δ-endotoxin: evidence that toxin acts at the surface of susceptible cells. Experientia 34:762–763.

    PubMed  CAS  Google Scholar 

  • Feitelson JS, Payne J, Kim L (1992) Bacillus thuringiensis: Insects and beyond. Bio/Technology 10:271–275.

    Google Scholar 

  • Ferré J, Real MD, Van Rie J, Jansens S, Peferoen M (1991) Resistance to Bacillus thuringiensis bioinsecticide in a field population ofPlutella xylostellais due to a change in a midgut membrane receptor. Proc Natl Acad Sci USA 88:5119–5123.

    PubMed  Google Scholar 

  • Forcada C, Alcácer E, Garcerá MD, Tato A, Martínez R (1999) Resistance to Bacillus thuringiensis Cry1 Ac toxin in three strains of Heliothis virescens: proteolytic and SEM study of the larval midgut. Arch Insect Biochem Physiol 42:51–63.

    PubMed  CAS  Google Scholar 

  • Francis BR, Bulla LA Jr (1997) Further characterization of BT-R1, the cadherin-like receptor for Cryl Ab toxin in tobacco hornworm (Manduca sexta) midguts. Insect Biochem Mol Biol 27:541–550.

    PubMed  CAS  Google Scholar 

  • Garczynski SF, Adang MJ (1995) Bacillus thuringiensis CrylA(c) δ-endotoxin binding aminopeptidase in the Manduca sexta midgut has a glycosyl-phosphatidylinositol anchor. Insect Biochem Mol Biol 25:409–415.

    CAS  Google Scholar 

  • Garczynski SF, Crim JW, Adang MJ (1991) Identification of putative insect brush border membrane-binding molecules specific to Bacillus thuringiensis δ-endotoxin by protein blot analysis. Appl Environ Microbiol 57:2816–2820.

    PubMed  CAS  Google Scholar 

  • Gazit E, Shai Y (1995) The assembly and organization of the α5 and α7 helices from the pore forming domain of Bacillus thuringiensis δ-endotoxin. Relevance to a functional model. J Biol Chem 270:2571–2578.

    CAS  Google Scholar 

  • Gazit E, Bach D, Kerr ID, Sansom MSP, Chejanovsky N, Shai Y (1994) The α;5 segment of Bacillus thuringiensis δ-endotoxin: in vitro activity, ion channel formation and molecular modelling. Biochem J 304:895–902.

    PubMed  CAS  Google Scholar 

  • Gazit E, La Rocca P, Sansom MSP, Shai Y (1998) The structure and organization within the membrane of the helices composing the pore-forming domain of Bacillus thuringiensis endotoxin are consistent with an “umbrella-like” structure of the pore. Proc Natl Acad Sci USA 95:12289–12294.

    PubMed  CAS  Google Scholar 

  • Gill SS, Cowles EA, Francis V (1995) Identification, isolation, and cloning of a Bacillus thuringiensis CryIAc toxin-binding protein from the midgut of the lepidopteran insect Heliothis virescens. J Biol Chem 270:27277–27282.

    PubMed  CAS  Google Scholar 

  • Giordana B, Sacchi FV, Hanozet GM (1982) Intestinal amino acid absorption in lepidopteran larvae. Biochim Biophys Acta 692:81–88.

    CAS  Google Scholar 

  • Giordana B, Sacchi VF, Parenti P, Hanozet GM (1989) Amino acid transport systems in intestinal brush-border membranes from lepidopteran larvae. Am J Physiol 257:R494 R500.

    Google Scholar 

  • Giordana B, Tasca M, Villa M, Chiantore C, Hanozet GM, Parenti P (1993) Bacillus thuringiensis subsp. aizawai δ-endotoxin inhibits the K+/amino acid cotransporters of lepidopteran larval midgut. Comp Biochem Physiol 106C:403–407.

    CAS  Google Scholar 

  • Gould F, Martinez-Ramirez A, Anderson A, Ferre J, Silva FJ, Moar WJ (1992) Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Proc Nad Acad Sci USA 89: 7986–7990.

    CAS  Google Scholar 

  • Griego VM, Moffett D, Spence KD (1979) Inhibition of active K+ transport in the tobacco hornworm (Manduca sexta) midgut after ingestion of Bacillus thuringiensis endotoxin. J Insect Physiol 25:283–288.

    CAS  Google Scholar 

  • Gringorten JL (1999) Ion regulation in the larval lepidopteran midgut and the response to Bacillus thuringiensis δ-endotoxin. Pestic Sci 55:604–606.

    CAS  Google Scholar 

  • Gringorten JL, Milne RE, Fast PG, Sohi SS, van Frankenhuyzen K (1992) Suppression of Bacillus thuringiensis δ-endotoxin activity by low alkaline pH. J Invertebr Pathol 60:47 52.

    Google Scholar 

  • Gringorten JL, Crawford DN, Harvey WR (1993) High pH in the ectoperitrophic space of the larval lepidopteran midgut. J Exp Biol 183:353–359.

    PubMed  CAS  Google Scholar 

  • Gringorten JL, Sohi SS, Masson L (1999) Activity spectra of Bacillus thuringiensis δδ-endotoxins against eight insect cell lines. In Vitro Cell Dev Biol 35A:299–303.

    Google Scholar 

  • Grochulski P, Masson L, Borisova S, Pusztai-Carey M, Schwartz JL, Brousseau R, Cygler M (1995) Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation. J Mol Biol 254:447–464.

    PubMed  CAS  Google Scholar 

  • Gupta BL, Dow JAT, Hall TA, Harvey WR (1985) Electron probe X-fay microanalysis of the effects of Bacillus thuringiensis var. kurstaki crystal protein insecticide on ions in an electrogenic K+- transporting epithelium of the larval midgut in the lepidopteran, Manduca sexta, in vitro. J Cell Sci 74:137–152.

    PubMed  CAS  Google Scholar 

  • Haider MZ, Ellar DJ (1989) Mechanism of action of Bacillus thuringiensis insecticidal endotoxin: interaction with phospholipid vesicles. Biochim Biophys Acta 978:216–222.

    PubMed  CAS  Google Scholar 

  • Hannay CL (1953) Crystalline inclusions in aerobic spore-forming bacteria. Nature 172:1004.

    PubMed  CAS  Google Scholar 

  • Hanozet GM, Giordana B, Sacchi VF, Parenti P (1989) Amino acid transport systems in brush -border membrane vesicles from lepidopteran enterocytes. J Exp Biol 143:87–100.

    CAS  Google Scholar 

  • Harris JG (1997) Microbial insecticides - an industry perspective. In: Evans HF (ed) Microbial insecticides: novelty or necessity? BCPC Symp Proc No 68. British Crop Protection Council, Farnham, Surrey, pp 41–50.

    Google Scholar 

  • Harvey WR (1980) Water and ions in the gut. In: Locke M, Smith DS (eds) Insect biology in the future – “VBW 80”. Academic Press, New York, pp 105–124.

    Google Scholar 

  • Harvey WR, Nedergaard S (1964) Sodium-independent active transport of potassium in the isolated midgut of the cecropia silkworm. Proc Natl Acad Sci USA 51:757–764.

    PubMed  CAS  Google Scholar 

  • Harvey WR, Wolfersberger MG (1979) Mechanism of inhibition of active potassium transport in isolated midgut of Manduca sexta by Bacillus thuringiensis endotoxin. J Exp Biol 83:293–304.

    PubMed  CAS  Google Scholar 

  • Harvey WR, Zerahn K (1972) Active transport of potassium and other alkali metals by the isolated midgut of the silkworm. Curr Top Membr Transp 3:367–410.

    CAS  Google Scholar 

  • Harvey WR, Haskell JA, Zerahn K (1967) Active transport of potassium and oxygen consumption in the isolated midgut of Hyalophora cecropia. J Exp Biol 46:235–248

    PubMed  CAS  Google Scholar 

  • Harvey WR, Haskell JA, Nedergaard S (1968) Active transport by the cecropia midgut. III. Midgut potential generated directly by active K-transport. J Exp Biol 48:1–12.

    PubMed  CAS  Google Scholar 

  • Harvey WR, Cioffi M, Wolfersberger MG (1986) Transport physiology of lepidopteran midgut in relation to the action of Bt Delta δ-endotoxin. In: Samson RA, Vlak JM, Peters D (eds) Fundamental and applied aspects of invertebrate pathology. Foundation of the 4th International Colloquium of Invertebrate Pathology, Wageningen, Netherlands, pp 11–14.

    Google Scholar 

  • Heimpel AM, Angus TA (1959) The site of action of crystalliferous bacteria in Lepidoptera larvae. J Insect Pathol 1:152–170.

    Google Scholar 

  • Hendrickx K, De Loof A, Van Maellaert (1990) Effects of Bacillus thuringiensis Delta δ-endotoxin on the permeability of brush border membrane vesicles from tobacco hornworm (Manduca sexta) midgut. Comp Biochem Physiol 95C:241–245.

    CAS  Google Scholar 

  • Himeno M (1987) Mechanism of Bacillus thuringiensis insecticidal δ-endotoxin action on insect cells in vitro. In: Maramorosch K (ed) Biotechnology in invertebrate pathology and cell culture. Academic Press, San Diego, pp 29–43.

    Google Scholar 

  • Hodgman TC, Ellar DJ (1990) Models for the structure and function of the Bacillus thuringiensis δ-endotoxins determined by compilational analysis. DNA Sequence 1:97–106.

    PubMed  CAS  Google Scholar 

  • Hofmann C, Lüthy P, Hütter R, Pliska V (1988a) Binding of the delta δ-endotoxin from Bacillus thuringiensis to brush-border membrane vesicles of the cabbage butterfly (Pieris brassicae). Eur J Biochem 173:85–91.

    PubMed  CAS  Google Scholar 

  • Hofmann C, Vanderbruggen H, Höfte H, Van Rie J, Jansens S, Van Mellaert H (1988b) Specificity of Bacillus thuringiensis δ-endotoxins is correlated with the presence of high affinity binding sites in the brush border membrane of target insect midguts. Proc Nad Acad Sci USA 85:7844–7848.

    CAS  Google Scholar 

  • Huber HE, Lüthy P (1981) Bacillus thuringiensis delta -endotoxin: composition and activation. In: Davidson EW (ed) Pathogenesis of invertebrate microbial diseases. Allanheld Osmun, Totowa, NJ, pp 209–234.

    Google Scholar 

  • Ihara H, Kuroda E, Wadano A, Himeno M (1993) Specific toxicity of cδ-endotoxins from Bacillus thuringiensis to Bombyx mori. Biosci Biotechnol Biochem 57:200–204.

    CAS  Google Scholar 

  • Keeton TP, Bulla LA Jr (1997) Ligand specificity and affinity of BT-R1, the Bacillus thuringiensis Cryl A toxin receptor from Manduca sexta, expressed in mammalian and insect cell cultures. Appl Environ Microbiol 63:3419–3425.

    PubMed  CAS  Google Scholar 

  • Keller B, Langenbruch GA (1993) Control of coleopteran pests by Bacillus thuringiensis In: Entwistle PF, Cory JS, Bailey MJ, Higgs S (eds) Bacillus thuringiensis, an environmental biopesticide: theory and practice. Wiley, Chichester, pp 171–191.

    Google Scholar 

  • Klein U, Löffelmann G, Wieczorek H (1991) The midgut as a model system for insect K- transporting epithelia: immunocytochemical localization of a vacuolar-type H+ pump. J Exp Biol 161:61–75.

    CAS  Google Scholar 

  • Klein U, Koch A, Moffett DF (1996) Ion transport in Lepidoptera. In: Lehane MJ, Billingsley PF (eds) Biology of the insect midgut. Chapman and Hall, London, pp 236–264.

    Google Scholar 

  • Knight PJK, Crickmore N, Ellar DJ (1994) The receptor for Bacillus thuringiensis CryIA(c) δ-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Mol Microbiol 11:429–436.

    PubMed  CAS  Google Scholar 

  • Knight PJK, Knowles BH, Ellar DJ (1995) Molecular cloning of an insect aminopeptidase N that serves as a receptor for Bacillus thuringiensis CryIA(c) toxin. J Biol Chem 270:17765–17770.

    PubMed  CAS  Google Scholar 

  • Knowles BH (1994) Mechanism of action of Bacillus thuringiensis insecticidal i δ-endotoxins. Adv Insect Physiol 24:275–308.

    CAS  Google Scholar 

  • Knowles BH, Dow JAT (1993) The crystal K δ-endotoxin of Bacillus thuringiensis: models for their mechanism of action on the insect gut. BioEssays 15:469–476.

    CAS  Google Scholar 

  • Knowles BH, Ellar DJ (1987) Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis δ-endotoxins with different insect specificity. Biochim Biophys Acta 924:509–518.

    CAS  Google Scholar 

  • Knowles BH, Farndale RW (1988) Activation of insect cell adenylate cyclase by Bacillus thuringiensis δ-endotoxins and melittin. Biochem J 253:235–241.

    PubMed  CAS  Google Scholar 

  • Kramer KJ, Muthukrishnan S (1997) Insect chitinases: molecular biology and potential use as biopesticides. Insect Biochem Mol Biol 27:887–900.

    PubMed  CAS  Google Scholar 

  • Lecadet MM, Martouret D (1967) Enzymatic hydrolysis of the crystals of Bacillus thuringiensis by the proteases of Pieris brassicae. II. Toxicity of the different fractions of the hydrolysate for larvae of Pieris brassicae. J Invertebr Pathol 9:322–330.

    CAS  Google Scholar 

  • Lee MK, Milne RE, Ge AZ, Dean DH (1992) Location of a Bombyx mori receptor binding region on a i δ-endotoxin. J Biol Chem 267:3115–3121.

    PubMed  CAS  Google Scholar 

  • Lee MK, Curtiss A, Alcantara E, Dean DH (1996a) Synergistic effect of the Bacillus thuringiensis toxins CryIAa and CryIAc on the gypsy moth, Lymantria dispar. Appl Environ Microbiol 62:583–586.

    PubMed  CAS  Google Scholar 

  • Lee MK, You TH, Young BA, Cotrill JA, Valaitis AP, Dean DH (1996b) Aminopeptidase N purified from gypsy moth brush border membrane vesicles is a specific receptor for Bacillus thuringiensis CryIAc toxin. Appl Environ Microbiol 62:2845–2849.

    PubMed  CAS  Google Scholar 

  • Leonardi MG, Parenti P, Casartelli M, Giordana B (1997) Bacillus thuringiensis CrylAa - endotoxin affects K+/amino acid symport in Bombyx mori larval midgut. J Membr Biol 159:209–217.

    PubMed  CAS  Google Scholar 

  • Lepier A, Azuma M, Harvey WR, Wieczorek H (1994) K+/H+ antiport in the tobacco hornworm midgut: the K+-transporting component of the K+ pump. J Exp Biol 196:361–373.

    PubMed  CAS  Google Scholar 

  • Lereclus D, Delécluse A, Lecadet MM (1993) Diversity of Bacillus thuringiensis toxins and genes. In: Entwistle PF, Cory JS, Bailey MJ, Higgs S (eds) Bacillus thuringiensis, an environmental biopesticide: theory and practice. Wiley, Chichester, pp 37–69.

    Google Scholar 

  • Li J, Carroll J, Ellar DJ (1991) Crystal structure of insecticidal 8 δ-endotoxin from Bacillus thuringiensis at 2.5 Å resolution. Nature 353:815–821.

    PubMed  CAS  Google Scholar 

  • Liang Y, Patel SS, Dean DH (1995) Irreversible binding kinetics of Bacillus thuringiensis CryIA - endotoxins to gypsy moth brush border membrane vesicles is directly correlated to toxicity. J Biol Chem 270:24719–24724.

    PubMed  CAS  Google Scholar 

  • Liebig B, Stetson DL, Dean DH (1995) Quantification of the effect of Bacillus thuringiensis toxins on short-circuit current in the midgut of Bombyx mori. J Insect Physiol 41:17–22 Lorence A, Darszon A, Diaz C, Liévano A, Quintero R, Bravo A (1995) 2δ-endotoxins induce cation channels in Spodoptera frugiperda brush border membranes in suspension and in planar lipid bilayers. FEBS Lett 360:217–222.

    Google Scholar 

  • Lorence A, Darzon A, Bravo A (1997) Aminopeptidase dependent pore formation of Bacillus thuringiensis CrylAc toxin on Trichoplusia ni membranes. FEBS Lett 414:303–307.

    PubMed  CAS  Google Scholar 

  • Lu YJ, Adang MJ (1996) Conversion of Bacillus thuringiensis CryIAc-binding aminopeptidase to a soluble form by endogenous phosphatidylinositol phospholipase C. Insect Biochem Mol Biol 26:33–40.

    CAS  Google Scholar 

  • Luo K, Lu YJ, Adang MJ (1996) A 106 kDa form of aminopeptidase is a receptor for Bacillus thuringiensis CryIC C δ-endotoxin in the brush border membrane of Manduca sexta. Insect Biochem Mol Biol 26:783–791.

    CAS  Google Scholar 

  • Luo K, Sangadala S, Masson L, Mazza A, Brousseau R, Adang MJ (1997) The Heliothis virescens 170 kDa aminopeptidase functions as “Receptor A” by mediating specific Bacillus thuringiensis C rylA Cδ-endotoxin binding and pore formation. Insect Biochem Mol Biol 27:735–743.

    PubMed  CAS  Google Scholar 

  • Luo K, Banks D, Adang MJ (1999) Toxicity, binding, and permeability analyses of four Bacillus thuringiensis Cry δ-endotoxins using brush border membrane vesicles ofSpodoptera exiguaand Spodoptera frugiperda. Appl Environ Microbiol 65:457–464.

    PubMed  CAS  Google Scholar 

  • Lüthy P, Ebersold HR (1981) Bacillus thuringiensis Delta-endotoxin: histopathology and molecular mode of action. In: Davidson EW (ed) Pathogenesis of invertebrate microbial diseases. Allanheld Osmun, Totowa, NJ, pp 235–267.

    Google Scholar 

  • MacIntosh SC, Stone TB, Jokerst RC, Fuchs RL (1991) Binding of Bacillus thuringiensis proteins to a laboratory-selected line of Heliothis virescens. Proc Natl Acad Sci USA 88:8930–8933.

    PubMed  CAS  Google Scholar 

  • Martin PAW, Travers RS (1989) Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl Environ Microbiol 55:2437–2442.

    PubMed  CAS  Google Scholar 

  • Martin F, Wolfersberger MG (1995) Bacillus thuringiensis δ-endotoxin and larval Manduca sexta brush-border membrane vesicles act synergistically to cause very large increases in the conductance of planar lipid bilayers. J Exp Biol 198:91–96.

    PubMed  CAS  Google Scholar 

  • Martínez-Ramírez AC, Gould F, Ferré J (1999) Histopathological effects and growth reduction in a susceptible and a resistant strain of Heliothis virescens (Lepidoptera: Noctuidae) caused by sublethal doses of pure CrylA crystal proteins from Bacillus thuringiensis. Biocontr Sci Technol 9:239–246.

    Google Scholar 

  • Masson L, Mazza A, Brousseau R, Tabashnik B (1995) Kinetics of Bacillus thuringiensis toxin binding with brush border membrane vesicles from susceptible and resistant larvae of Plutella xylostella. J Biol Chem 270:11887–11896.

    PubMed  CAS  Google Scholar 

  • Masson L, Tabashnik BE, Liu YB, Brousseau R, Schwartz JL (1999) Helix 4 of the Bacillus thuringiensis CrylAa toxin lines the lumen of the ion channel. J Biol Chem 274:31996–32000.

    PubMed  CAS  Google Scholar 

  • Milne R, Ge AZ, Rivers D, Dean DH (1990) Specificity of insecticidal crystal proteins: Implications for industrial standardization. In: Hickle LA, Fitch WL (eds) Analytical chemistry of Bacillus thuringiensis. ACS symposium series 432. American Chemical Society, Washington, DC, pp 22–35.

    Google Scholar 

  • Milne RE, Pang ASD, Kaplan H (1995) A protein complex from Choristoneura fumiferana gut juice involved in the precipitation of j δ-endotoxin from Bacillus thuringiensis subsp. sotto. Insect Biochem Mol Biol 25:1101–1114.

    PubMed  CAS  Google Scholar 

  • Milne R, Wright T, Kaplan H, Dean D (1998) Spruce budworm elastase precipitates Bacillus thuringiensis δ-endotoxin by specifically recognizing the C-terminal region. Insect Biochem Mol Biol 28:1013–1023.

    PubMed  CAS  Google Scholar 

  • Mitani K, Watarai J (1916) A new method to isolate the toxin of Bacillus sotto Ishiwata by passing through a bacterial filter and preliminary report on the toxic action of this toxin to the silkworm larva. Aichi Gensanshu Seizojo Hokoku (in Japanese; translation by T.B. Tsay, Canadian Forest Service).

    Google Scholar 

  • Moffett DF, Cummings SA (1994) Transepithelial potential and alkalization in an in situ preparation of tobacco hornworm (Manduca sexta) midgut. J Exp Biol 194:341–345

    PubMed  CAS  Google Scholar 

  • Moffett DF, Koch AR (1988) Electrophysiology of K+ transport by midgut epithelium of lepl dopteran insect larvae. I. The transbasal electrochemical gradient. J Exp Biol 135:25–38.

    Google Scholar 

  • Moffett DF, Koch A, Woods R (1995) Electrophysiology of K+ transport by midgut epithelium of lepidopteran insect larvae. III. Goblet valve patency. J Exp Biol 198:2103–2113

    PubMed  CAS  Google Scholar 

  • Monette R, Savaria D, Masson L, Brousseau R, Schwartz JL (1994) Calcium-activated potassium channels in the UCR-SE-la lepidopteran cell line from the beet armyworm (Spodoptera exigua). J Insect Physiol 40:273–282.

    CAS  Google Scholar 

  • Monette R, Potvin L, Baines D, Laprade R, Schwartz JL (1997) Interaction between calcium ions and Bacillus thuringiensis toxin activity against Sf9 cells (Spodoptera frugiperda Lepidoptera). Appl Environ Microbiol 63:440–447.

    PubMed  CAS  Google Scholar 

  • Murphy DW, Sohi SS, Fast PG (1976) Bacillus thuringiensis enzyme-digested delta-endotoxin: effect on cultured insect cells. Science 194:954–956.

    PubMed  CAS  Google Scholar 

  • Narayanan K, Jayaraj S (1974) The effect of Bacillus thuringiensis endotoxin on hemolymph cation levels in the citrus leaf caterpillar, Papilio demoleus. J Invertebr Pathol 23:125–126.

    CAS  Google Scholar 

  • Navon A (1993) Control of lepidopteran pests with Bacillus thuringiensis. In: Entwistle PF, Cory JS, Bailey MJ, Higgs S (eds) Bacillus thuringiensis, an environmental biopesticide: theory and practice. Wiley, Chichester, pp 125–146.

    Google Scholar 

  • Nishiitsutsuji-Uwo J, Endo Y (1980) Mode of action of Bacillus thuringiensis δ-endotoxin: general characteristics of intoxicated Bombyx larvae. J Invertebr Pathol 35:219–228.

    CAS  Google Scholar 

  • Nishiitsutsuji-Uwo J, Endo Y (1981a) Mode of action of Bacillus thuringiensis δ-endotoxin: effect on Galleria mellonella (Lepidoptera: Pyralidae). Appl Entomol Zool 16:79–87.

    CAS  Google Scholar 

  • Nishiitsutsuji-Uwo J, Endo Y (1981b) Mode of action of Bacillus thuringiensis δ-endotoxin: changes in hemolymph pH and ions of Pieris, Lymantria and Ephestia larvae. Appl Entomol Zool 16:225–230.

    CAS  Google Scholar 

  • Nishiitsutsuji-Uwo J, Endo Y, Himeno M (1979) Mode of action of Bacillus thuringiensis endotoxin: effect on TN-368 cells. J Invertebr Pathol 34:267–275.

    CAS  Google Scholar 

  • Norris JR (1971) The protein crystal toxin of Bacillus thuringiensis biosynthesis and physical structure. In: Burges HD, Hussey NW (eds) Microbial control of insects and mites. Academic Press, London, pp 229–246.

    Google Scholar 

  • Pang ASD, Gringorten JL (1998) Degradation of Bacillus thuringiensis δ-endotoxin in host insect gut juice. FEMS Microbiol Lett 167:281–285.

    CAS  Google Scholar 

  • Parenti P, Villa M, Hanozet GM, Tasca M, Giordana B (1995) Interaction of the insecticidal crystal protein Cryl A from Bacillus thuringiensis with amino acid transport into brush border membranes from Bombyx mori larval midgut. J Invertebr Pathol 65:35–42.

    PubMed  CAS  Google Scholar 

  • Pendleton IR (1970) Sodium and potassium fluxes in Philosamia ricini during Bacillus thuringiensis protein crystal intoxication. J Invertebr Pathol 16:313–314.

    PubMed  CAS  Google Scholar 

  • Percy J, Fast PG (1983) Bacillus thuringiensis crystal toxin: ultrastructural studies of its effect on silkworm midgut cells. J Invertebr Pathol 41:86–98.

    Google Scholar 

  • Peyronnet O, Vachon V, Brousseau R, Baines D, Schwartz JL, Laprade R (1997) Effect of Bacillus thuringiensis toxins on the membrane potential of lepidopteran insect midgut cells. Appl Environ Microbiol 63:1679–1684.

    PubMed  CAS  Google Scholar 

  • Pietrantonio PV, Gill SS (1996) Bacillus thuringiensis endotoxins: action on the insect midgut. In: Lehane MJ, Billingsley PF (eds) Biology of the insect midgut. Chapman and Hall, London, pp 345–372.

    Google Scholar 

  • Potvin L, Laprade R, Schwartz JL (1998) Cryl Ac, a Bacillus thuringiensis toxin, triggers extracellular Ca2+ influx and Ca2+ release from intracellular stores in Cf1 cells (Choristoneura fumifer- ana, Lepidoptera). J Exp Biol 201:1851–1858.

    PubMed  CAS  Google Scholar 

  • Rajamohan F, Lee MK, Dean DH (1998) Bacillus thuringiensis insecticidal proteins: molecular mode of action. Progr Nucl Acid Res Mol Biol 60:1–27.

    CAS  Google Scholar 

  • Ramakrishnan N (1968) Observations on the toxicity of Bacillus thuringiensis for the silkworm, Bombyx mori. J Invertebr Pathol 10:449–450.

    Google Scholar 

  • Reuveni M, Dunn PE (1991) Differential inhibition by Bacillus thuringiensis δ-endotoxin of leucine and aspartic acid uptake into BBMV from midgut of Manduca sexta. Biochem Biophys Res Commun 181:1089–1093.

    PubMed  CAS  Google Scholar 

  • Ridgway RL Moffett DF (1986) Regional differences in the histochemical localization of carbonic anhydrase in the midgut of tobacco hornworm (Manduca sexta). J Exp Zool 237:407–412.

    CAS  Google Scholar 

  • Sacchi VF, Wolfersberger MG (1996) Amino acid absorption. In: Lehane MJ, Billingsley PF (eds) Biology of the insect midgut. Chapman and Hall, London, pp 265–292.

    Google Scholar 

  • Sacchi VF, Parenti P, Hanozet GM, Giordana B, Liithy P, Wolfersberger MG (1986) Bacillus thuringiensis toxin inhibits K+-gradient-dependent amino acid transport across the brush border membrane of Pieris brassicae midgut cells. FEBS Lett 204:213–218.

    CAS  Google Scholar 

  • Sangadala S, Walters FS, English LH, Adang MJ (1994) A mixture ofManduca sextaaminopeptidase and phosphatase enhances Bacillus thuringiensis insecticidal CryIA(c) toxin binding and 86Rb+-K+ efflux in vitro. J Biol Chem 269:10088–10092.

    PubMed  CAS  Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson Jy Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806.

    PubMed  CAS  Google Scholar 

  • Schultz JC, Lechowicz MJ (1986) Hostplant, larval age, and feeding behavior influence midgut pH in the gypsy moth (Lymantria dispar). Oecologia 71:133–137.

    Google Scholar 

  • Schwab GE, Culver P (1990) In vitro analyses of Bacillus thuringiensis δ-endotoxin action. In: Hickle LA, Fitch WL (eds) Analytical chemistry of Bacillus thuringiensis. ACS symposium series 432. American Chemical Society, Washington, DC, pp 36–45.

    Google Scholar 

  • Schwartz JL, Laprade R (2000) Membrane permeabilization by Bacillus thuringiensis toxins: protein insertion and pore formation. In: Charles JF, Delecluse A, Nielsen-LeRoux C (eds) Entomopathogenic bacteria: from laboratory to field application. Kluwer, Dordrecht, Netherlands, pp 199–218.

    Google Scholar 

  • Schwartz JL, Garneau L, Masson L, Brousseau R (1991) Early response of cultured lepidopteran cells to exposure to c δ-endotoxin from Bacillus thuringiensis: involvement of calcium and anionic channels. Biochim Biophys Acta 1065:250–260.

    PubMed  CAS  Google Scholar 

  • Schwartz JL, Garneau L, Savaria D, Masson L, Brousseau R, Brousseau E (1993) Lepidopteran specific crystal toxins from Bacillus thuringiensis form cation- and anion-selective channels in planar lipid bilayers. J Membr Biol 132:53–62.

    PubMed  CAS  Google Scholar 

  • Schwartz JL, Lu YJ, Sohnlein P, Brousseau R, Laprade R, Masson L, Adang M (1997a) Ion channels formed in planar lipid bilayers by Bacillus thuringiensis toxins in the presence ofManduca sextamidgut receptors. FEBS Lett 412:270–276.

    PubMed  CAS  Google Scholar 

  • Schwartz JL, Juteau M, Grochulski P, Cygler M, Prefontaine G, Brousseau R, Masson L (1997b) Restriction of intramolecular movements within the CrylAa toxin molecule of Bacillus thuringiensis through disulfide bond engineering. FEBS Lett 410:397–402.

    PubMed  CAS  Google Scholar 

  • Schwartz JL, Potvin L, Chen XJ, Brousseau R, Laprade R, Dean DH (1997c) Single-site mutations in the conserved alternating-arginine region affect ionic channels formed by CryIAa, a Bacillus thuringiensis toxin. Appl Environ Microbiol 63:3978–3984.

    PubMed  CAS  Google Scholar 

  • Schweikl H, Klein U, Schindlbeck M, Wieczorek H (1989) A vacuolar-type ATPase, partially purified from potassium transporting plasma membranes of tobacco hornworm midgut. J Biol Chem 264:11136–11142.

    PubMed  CAS  Google Scholar 

  • Skibbe U, Christeller JT, Callaghan PT, Eccles CD, Laing WA (1996) Visualization of pH gradients in the larval midgut of Spodoptera litura using 31P-NMR microscopy. J Insect Physiol 42:777–790.

    CAS  Google Scholar 

  • Slatin SL, Abrams CK, English L (1990) Delta δ-endotoxins form cation-selective channels in planar lipid bilayers. Biochem Biophys Res Commun 169:765–772.

    PubMed  CAS  Google Scholar 

  • Smith RA, Couche GA (1991) The Phylloplane as a source of Bacillus thuringiensis variants. Appl 205 Environ Microbiol 57:311–315.

    CAS  Google Scholar 

  • Steinhaus EA (1961) On the correct author of Bacillus sotto. J Insect Pathol 3:97–100.

    Google Scholar 

  • Tabashnik BE, Finson N, Groeters FR, Moar WJ, Johnson MW, Luo K, Adang MJ (1994) Reversal of resistance to Bacillus thuringiensis in Plutella xylostella. Proc Natl Acad Sci USA 91:4120–4124.

    PubMed  CAS  Google Scholar 

  • Travers RS, Faust RM, Reichelderfer CF (1976) Effects of Bacillus thuringiensis var. kurstaki endotoxin on isolated lepidopteran mitochondria. J Invertebr Pathol 28:351–356.

    CAS  Google Scholar 

  • Vachon V, Paradis MJ, Marsolais M, Schwartz JL, Laprade R (1995) Ionic permeabilities induced by insecticidal toxins of Bacillus thuringiensis in Sf9 cells. J Membr Biol 148:57–63.

    PubMed  CAS  Google Scholar 

  • Vadlamudi RK, Ji TH, Bulla LA Jr (1993) A specific binding protein fromManduca sextafor the insecticidal toxin of Bacillus thuringiensis subsp. berliner. J Biol Chem 268:12334–12340.

    PubMed  CAS  Google Scholar 

  • Vadlamudi RK, Weber E, Ji I, Ji TH, Bulla LA Jr (1995) Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. J Biol Chem 270:5490–5494.

    PubMed  CAS  Google Scholar 

  • Valaitis AP, Lee MK, Rajamohan F, Dean DH (1995) Brush border membrane aminopeptidase N in the midgut of the gypsy moth serves as the receptor for the CryIA(c) f δ-endotoxin of Bacillus thuringiensis. Insect Biochem Mol Biol 25:1143–1151.

    PubMed  CAS  Google Scholar 

  • van Frankenhuyzen K (1993) The challenge of Bacillus thuringiensis. In: Entwistie PF, Cory JS, Bailey MJ, Higgs S (eds) Bacillus thuringiensis, an environmental biopesticide: theory and practice. Wiley, Chichester, pp 1–35.

    Google Scholar 

  • van Frankenhuyzen K (2000) Application of Bacillus thuringiensis in forestry. In: Charles JF, Delécluse A, Nielsen-LeRoux C (eds) Entomopathogenic bacteria: from laboratory to field application. Kluwer, Dordrecht, Netherlands, pp 371–382.

    Google Scholar 

  • van Frankenhuyzen K, Gringorten JL, Milne RE, Gauthier D, Pusztai M, Brousseau R, Masson L (1991) Specificity of activated CryIA proteins from Bacillus thuringiensis subsp. kurstaki HD - 1 for defoliating forest Lepidoptera. Appl Environ Microbiol 57:1650–1655.

    PubMed  Google Scholar 

  • van Frankenhuyzen K, Gringorten JL, Gauthier D, Milne RE, Masson L, Peferoen M (1993) Toxicity of activated CryI proteins from Bacillus thuringiensis to six forest Lepidoptera and Bombyx mori. J Inverebr Pathol 62:295–301.

    Google Scholar 

  • Van Rie J, Jansens S, Höfte H, Degheele D, Van Mellaert H (1989) Specificity of Bacillus thuringiensis δ-endotoxins: importance of specific receptors on the brush border membrane of the midgut of target insects. Eur J Biochem 186:239–247.

    PubMed  Google Scholar 

  • Van Rie J, Jansens S, Höfte H, Degheele D, Van Mellaert H (1990a) Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis Delta δ-endotoxins. Appl Environ Microbiol 56:1378–1385.

    PubMed  Google Scholar 

  • Van Rie J, McGaughey WH, Johnson DE, Barnett BD, Van Mellaert H (1990b) Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science 247:72–74.

    PubMed  Google Scholar 

  • Villalon M, Vachon V, Brousseau R, Schwartz JL, Laprade R (1998) Video imaging analysis of the plasma membrane permeabilizing effects of Bacillus thuringiensis insecticidal toxins in Sf9 cells. Biochim Biophys Acta 1368:27–34.

    PubMed  CAS  Google Scholar 

  • Walters FS, Slatin SL, Kulesza CA, English LH (1993) Ion channel activity of N-terminal fragments from CryIA(c) Delta δ-endotoxin. Biochem Biophys Research Commun 196:921–926.

    CAS  Google Scholar 

  • Walters FS, Kulesza CA, Phillips AT, English LH (1994) A stable oligomer of Bacillus thuringiensis Delta δ-endotoxin, CryIIIA. Insect Biochem Mol Biol 24:963–968.

    CAS  Google Scholar 

  • Wieczorek H (1992) The insect V-ATPase, a plasma membrane proton pump energizing secondary active transport: molecular analysis of the electrogenic potassium transport in the tobacco hornworm midgut. J Exp Biol 172:335–343.

    PubMed  CAS  Google Scholar 

  • Wieczorek H, Wolfersberger MG, Cioffi M, Harvey WR (1986) Cation-stimulated ATPase activity in purified plasma membranes from tobacco hornworm midgut. Biochim Biophys Acta 857:271–281.

    PubMed  CAS  Google Scholar 

  • Wieczorek H, Weerth S, Schindlbeck M, Klein U (1989) A vacuolar-type proton pump in a vesicle fraction enriched with potassium transporting plasma membranes from tobacco hornworm midgut. J Biol Chem 264:11143–11148.

    PubMed  CAS  Google Scholar 

  • Wieczorek H, Putzenlechner M, Zeiske W, Klein U (1991) A vacuolar-type proton pump energizes K+/H+ antiport in an animal plasma membrane. J Biol Chem 266:15340–15347 Wieczorek H, Brown D, Grinstein S, Ehrenfeld J, Harvey WR (1999a) Animal plasma membrane energization by proton-motive V-ATPases. BioEssays 21:637–648.

    Google Scholar 

  • Wieczorek H, Grüber G, Harvey WR, Huss M, Merzendorfer H (1999b) The plasma membrane H+-V-ATPase from tobacco hornworm midgut. J Bioenerget Biomembr 31:67–74.

    CAS  Google Scholar 

  • Wilson GR, Benoit TG (1990) Activation and germination of Bacillus thuringiensis spores inManduca sextalarval gut fluid. J Invertebr Pathol 56:233–236.

    PubMed  CAS  Google Scholar 

  • Witt DP, Carson H, Hodgdon JC (1986) Cytotoxicity of Bacillus thuringiensis δ-endotoxins to cultured Cf-1 cells does not correlate with in vivo activity toward spruce budworm larvae. In: Samson RA, Vlak JM, Peters D (eds) Fundamental and applied aspects of invertebrate pathology. Foundation of the 4th International Colloquium of Invertebrate Pathology, Wageningen, Netherlands, pp 3–6.

    Google Scholar 

  • Wolfersberger MG (1989) Neither barium nor calcium prevents the inhibition by Bacillus thuringiensis δ-endotoxin of sodium- or potassium gradient-dependent amino acid accumulation by tobacco hornworm midgut brush border membrane vesicles. Arch Insect Biochem Physiol 12:267–277.

    CAS  Google Scholar 

  • Wolfersberger MG (1990) The toxicity of two Bacillus thuringiensis δ-endotoxins to gypsy moth larvae is inversely related to the affinity of binding sites on midgut brush border membranes for the toxins. Experientia 46:475–477.

    PubMed  CAS  Google Scholar 

  • Wolfersberger MG (1991) Inhibition of potassium-gradient-driven phenylalanine uptake in larval Lymantria dispar midgut by two Bacillus thuringiensis Delta-endotoxins correlates with the activity of the toxins as gypsy moth larvicides. J Exp Biol 161:519–525.

    PubMed  CAS  Google Scholar 

  • Wolfersberger MG (1992) V-ATPase-energized epithelia and biological insect control. J Exp Biol 172:377–386.

    PubMed  CAS  Google Scholar 

  • Wolfersberger MG (1996) Localization of amino acid absorption.systems in the larval midgut of the tobacco hornworm Manduca sexta. J Insect Physiol 42:975–982.

    CAS  Google Scholar 

  • Wolfersberger MG, Spaeth DD (1987) Activity of spore-crystal preparations from twenty serotypes of Bacillus thuringiensis towardManduca sextalarvae in vivo and in vitro. J Appl Entomol 103:138–141.

    Google Scholar 

  • Wolfersberger MG, Harvey WR, Cioffi M (1982) Transepithelial potassium transport in insect midgut by an electrogenic alkali metal ion pump. Curr Top Membr Transp 16:109–133.

    CAS  Google Scholar 

  • Wolfersberger MG, Luethy P, Maurer A, Parenti P, Sacchi FV, Giordana B, Hanozet GM (1987) Preparation and partial characterization of amino acid transporting brush border membrane vesicles from the larval midgut of the cabbage butterfly (Pieris brassicae). Comp Biochem Physiol 86A:301–308.

    CAS  Google Scholar 

  • Wolfersberger MG, Chen XJ, Dean DH (1996) Site-directed mutations in the third domain of Bacillus thuringiensis δ-endotoxin CryIAa affect its ability to increase the permeability of Bombyx mori midgut brush border membrane vesicles. Appl Environ Microbiol 62:279–282.

    PubMed  CAS  Google Scholar 

  • Wood JL, Farrand PS, Harvey WR (1969) Active transport of potassium by the cecropia midgut. VI. Microelectrode potential profile. J Exp Biol 50:169–178.

    CAS  Google Scholar 

  • Yaoi K, Kadotani T, Kuwana H, Shinkawa A, Takahashi T, Iwahana H, Sato R (1997) Aminopeptidase N from Bombyx mori as a candidate for the receptor of Bacillus thuringiensis CrylAa toxin. Eur J Biochem 246:652–657.

    PubMed  CAS  Google Scholar 

  • Yi S, Pang ASD, van Frankenhuyzen K (1996) Immunocytochemical localization of Bacillus thuringiensis Cryl toxins in the midguts of three forest insects and Bombyx mori. Can J Microbiol 42:634–641.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Gringorten, J.L. (2001). Ion Balance in the Lepidopteran Midgut and Insecticidal Action of Bacillus thuringiensis . In: Ishaaya, I. (eds) Biochemical Sites of Insecticide Action and Resistance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59549-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59549-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67625-6

  • Online ISBN: 978-3-642-59549-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics