Skip to main content

Abstract

Soil moisture is an environmental descriptor that integrates much of the land surface hydrology and is the interface between the solid earth surface and the atmosphere. By far the most important role for soil moisture is in controlling and regulating the interaction between the atmosphere and the land surface. The redistribution of solar energy over the globe is central to studies in climate and weather. Water serves a fundamental role in this redistribution through the energy associated with evapotranspiration, the transport of atmospheric water vapor, and precipitation. Residence times for atmospheric water is on the order of a week and for soil moisture from a couple of days to months, emphasizing the active nature of the hydrologic cycle. Understanding the importance of the land-surface hydrology to climate has emerged as an important research area since the mid 1960s when researchers at the Geophysical Fluid Dynamics Laboratory placed a land hydrology component into their general circulation model (GCM) (see Manabe et al., 1965; Manabe, 1969).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atlas, R., N. Wolfson, and J. Terry, The effect of SST and soil moisture anomalies on GLA model simulations of thel988 US summer drought. J. Climate, 6:2034–2048, 1993.

    Article  Google Scholar 

  • Barton, I.J., “A case study of microwave radiometer measurements over bare and vegeated surfaces” J. Geophys. Res 83:3515-3517, 1978

    Article  Google Scholar 

  • Basharinov, A.Y., and Shutko, A.M. “Simulation studies of the SHF radiation characteristics of soils under moist conditions, NASA Tech. Trans., TTF-16, Greenbelt, MD, 1975

    Google Scholar 

  • Beljaars, A., P. Viterbo, M. Miller, and A. Betts, "The anomalous rainfall over the US during July 1993 - sensitivity to land-surface parameterization and soil moisture". Monthly Weather Review, 124(3): 362–383, 1996.

    Article  Google Scholar 

  • Bruckler, L., Witono, H., and Stengel, P. "Near surface soil moisture estimation from microwave measurements". Remote Sens. Environ, 26:101–121, 1988.

    Article  Google Scholar 

  • Carroll, T.R., "Airborne soil moisture measurements using natural terrestrial gamma radiation" Soil Sci. 132(5):358–366, 1981.

    Article  Google Scholar 

  • Chang, J.-T. and P.J. Wetzel, "Effects of spatial variations of soil moisture and vegetation on the evolution of a pre-storm environment: a numerical case study." Mon. Wea. Rev., 119: 1368–1390, 1991.

    Article  Google Scholar 

  • Choudhury, B.J., Schmugge, T.J., NewtonR.W., and Chang, A. Effect of surface roughness on the microwave emission from soils, J. Geophys. Res. 81:3660–3666, 1979.

    Google Scholar 

  • Crist, E.P., and R.CCicone"Physically based transformation of Thematic Mapper data: VTM tasseled cap". IEEE TransGeosci. Remote Sensing,GE-22:256–263, 1984.

    Article  Google Scholar 

  • Dobson, M., F. Ulaby, M. Hallikainen and M. El-Rayes, “Microwave dielectric behavior of wet soil-part II: dielectric mixing models,” 23, pp. 3546, 1985

    Google Scholar 

  • Engman E.T., G. Angus, and W.P.Kustas, "Relationship between the hydrologic balance of a small watershed and remotely sensed soil moisture." Proc. IAHS Third International Assembly, Baltimore. IAHS Publ. No. 186:75–841989

    Google Scholar 

  • Engman, E.T., "Applications of microwave remote sensing of soil moisture for water resources and agriculture". Remote Sens. Environ., 35:213–226, 1991.

    Article  Google Scholar 

  • Fast, J.D. and M.D. McCorcle, "The effect of heterogeneous soil moisture on a summer baro-clinic circulation in the central United States". Mon. Wea. Rev., 119: 2140–2167, 1991.

    Article  Google Scholar 

  • Georgakakos, K., J. Sperfslage, and A. Guetter, "Operational GIS-based models for NEXRAD radar data in the U.S.". Proc. Of the Int. Conf. On Water Resources and Environmental Res., Oct. 29–31, Kyoto, Japan, Vol. I: 603–609, 1996.

    Google Scholar 

  • Goodrich, D.C., T.J.Schmugge, T.J.Jackson, C.L.Unkrich, T.O.Keefer, R.Parry, L.B.Bach and S.A.Amer, "Runoff simulation sensitivity to remotely sensed initial soil water content". Water Resources Res., 30(5): 1393–1405, 1994.

    Article  Google Scholar 

  • Jackson, T.J., Schmugge, T.J., and Wang, J.R., Passive microwave sensing of soil moisture under vegetation canopies, Water Resour. Res. 18(4): 1137–1142, 1982

    Article  Google Scholar 

  • Jackson, T.J. and T.J. Schmugge, "Correction for the Effects of Vegetation on the Microwave Emission of Soils". IEEE Int. Geosci. Remote Sensing Symp. (IGARSS) Digest, pp. 753–756, 1991.

    Google Scholar 

  • Jackson, T.J. and T.J. Schmugge, “Passive microwave remote sensing system for soil moisture: Some supporting research”. IEEE Trans. Geosci. Remote Sensing GE-27: 225-235, 1989

    Google Scholar 

  • Jackson, T.J., D.M. Le Vine, A.J. Griffis, D.C. Goodrich, T.J. Schmugge, C.T. Swift, and P. O’Neill, "Soil moisture and rainfall estimation over a semiarid environment with ESTAR microwave radiometer". IEEE Trans. Geoscience and Remote Sensing, 31(4): 836–841, 1993.

    Article  Google Scholar 

  • Jackson, T.J., D. Le Vine, C.T. Swift, T.Schmugge, and F. Schiebe, "Large area mapping of soil moisture using ESTAR passive microwave radiometer in WASHITA 92". Remote Sens. Environ., 53:27–37, 1995.

    Article  Google Scholar 

  • Jackson, T.J., P.E. OiNeill, and C.T. Swift, "Passive microwave observation of diurnal surface soil moisture". IEEE Trans, on Geoscience and Remote Sensing, 35(5): 1210–1222, 1997s.

    Article  Google Scholar 

  • Jackson, R.D., J. Ahler, J.E. Estes, J.L. Heilman, A. Kakle, E.T. Kanemasu, J. Millard, J.C. Price and C. Wiegand, "Soil moisture estimation using reflected solar and emitted thermal radiation". In Soil Moisture Workshop, NASA Conf. Publ. 2073, Chap. 7, 219pp, 1978.

    Google Scholar 

  • Kirdiashev, K.P., Chukhlantsev, A.A. and Shutko, A.M., Microwave radiation of the earth’s surface in the presence of vegetation cover, Radio Eng. Electron. (Engl. Transl.) 24:256–264, 1979

    Google Scholar 

  • Lin, D.-S., E.F.Wood, J.S.Famiglietti and M. Mancini, "Impact of microwave derived soil moisture on hydrologic simulations using a spatially distributed water balance model". Proc. of the 6th Inter. Symp. on Physical Measurements and Signatures in Remote Sensing, Val d’Isere, France, 1994

    Google Scholar 

  • Manabe, S., J. Smagorinsky, and R.J. Strickler, "Simulated climatology of a general circulation model with a hydrological cycle," Mon. Weather Rev., 93, pp. 769–798 1965.

    Article  Google Scholar 

  • Manabe, S., "Climate and ocean circulation, I, The atmospheric circulation and the hydrology ofthe Earth’s surface," Mon. Weather Rev., 91, pp. 739–774, 1969.

    Article  Google Scholar 

  • Mattikalli, N.M., E.T. Engman, T.J. Jackson, and L.R. Ahuja, "Microwave remote sensing of temporal variations of brightness temperature and near surface soil water content during wa- tershed-scale field experiment, and its application to estimation of soil physical properties". Water Resour. Res., 34(9) 2289–2299, 1998.

    Article  Google Scholar 

  • Mo. T., Schmugge, T.J., and Choudhury, B.J., Calculations of the spectral nature of the microwave emission from soils, NASA Tech Memo 82002, Greenbelt, MD, 1980.

    Google Scholar 

  • Newton, R.W., and Rouse, J.W., "Microwave radiometer measurements of moisture content". IEEE Trans. Antennas Propagat. AP-28:680–686, 1980

    Article  Google Scholar 

  • Newton, R.W., Black, Q.R., Makanvand, S., Blanchard, A.J., and Jean, B.R., "Soil moisture information and thermal microwave emission". IEEE Trans. Geosci. Remote Sens. GE- 21:300–307, 1982.

    Google Scholar 

  • Njoku, E., and J. Kong, "Theory of Passive Microwave Remote Sensing of Near-Surface SoilMoisture," J. Geophy. Res., 82, pp. 3108–3118, 1977.

    Article  Google Scholar 

  • Njoku, E. G. and L. Li, "Retrieval of land surface parameters using passive microwave measurements at 6–18 GHz". IEEE Trans. Geosci. Rem. Sens., in press 1999.

    Google Scholar 

  • NASA (1988), "SAR Instrument Panel Report," Earth Observing System.

    Google Scholar 

  • Oh, Y., K.Sarabandi, F.T. Ulaby, "An Empirical Model and an Inversion Technique for Radar Scattering from Bare Soil Surfaces." IEEE Trans, on Geosci. and Remote Sensing GE-30 (2): 370–381, 1992.

    Article  Google Scholar 

  • Price, J.C., "On the use of satellite data to infer surface fluxes at meteorological scales". J. Appl. Meteorol. 21: 1111–1122, 1982.

    Article  Google Scholar 

  • Promes, P.M., Jackson, T.J., and O’Neill, P.E., "Significance of agricultural row structure on the microwave emissivity of soils". IEEE Trans. Geosci. Remote Sens., 26(5):580–589, 1988

    Article  Google Scholar 

  • Schmugge, T.J., "Remote Sensing of soil moisture: Recent advances". IEEE Trans. Geosci. Remote Sens. GE-21(3):336–344, 1983.

    Article  Google Scholar 

  • Schmugge, T., "Measurements of surface soil moisture and temperature", in Remote Sensing of Biosphere Functioning (R.J. Hobbs and H.A. Mooney, Eds.), Springer-Verlag, New York, pp. 31–62, 1990.

    Google Scholar 

  • Schmugge, T.J., Wang. J.R., and Asrar, A., "Results from the pushbroom microwave radiometer flights over the Konza Prairie in 1985". IEEE Trans. Geosci. Remote Sens. GE-26:590–596, 1988.

    Article  Google Scholar 

  • Schulery D.L., W.C. Keller and W.J. Plant, "A three frequency scatterometer technique for measurement of ocean wave spectra," IEEE J. of Oceanic Engg., 16, pp. 244244 1991.

    Article  Google Scholar 

  • Theis, S.W., Blanchard, B.J., and Newton, R.W., "Utilization of vegetation indices to improve microwave soil moisture estimates over agricultural lands".IEEE Trans. Geosci. Remote Sens. GE-22(6):490–496, 1984.

    Google Scholar 

  • Theis, S.W. Blanchard B.J., and Blanchard, A.J., "Utilization of active microwave roughness measurements to improve passive microwave soil moisture estimates over bare soils". IEEE Trans. Geosci. Remote Sens. GE-24(3):334–339, 1986.

    Article  Google Scholar 

  • Ulaby, F., R. Moore and A. Fung, "Microwave Remote Sensing: Active and Passive", Addison-Wesley Publishing Company, Reading, MA, 1064 pp, 1982.

    Google Scholar 

  • Ulaby, F., R. Moore and A. Fung, "Microwave Remote Sensing: Active and Passive", VOL III, Addison-Wesley Publishing Company, Reading, MA, 1986.

    Google Scholar 

  • Ulaby, F., K. Sarabandi, K. McDonald, M. Whitt, and C. Dobson, "Michigan Microwave Scattering Model". Int. J. Remote Sensing, 11:12223–1253, 1990.

    Article  Google Scholar 

  • van de Griend, A., P.J. Camillo, and R.J. Gurney, "Discrimination of soil physical parameters, thermal inertia and soil moisture from diurnal surface temperature flucuations". Water Re- sour. Res. 21(7):997–1009, 1985

    Article  Google Scholar 

  • Verhoest N. E. C., P. A.Troch, C. Paniconi, F. P. De Troch, 1998. "Mapping basin-scale variable source areas from multitemporal remotely sensed observations of soil moisture behavior", Water Resour. Res., Vol. 34, p. 3235–3244.

    Article  Google Scholar 

  • Wang, J.R., and Schmugge, T.J., An empirical model for the complex dielectric permittivity of soils as a function of water content, IEEE Trans. Geosci. Remote Sens. GE-18:288–295, 1980

    Article  Google Scholar 

  • Wang, J.R., Newton, R.W., and Rouse, J.W., "Passive microwave remote sensing of soil moisture: The effect of tilled row structure". IEEE Trans. Geosci. Remote Sens. GE-18:296–302, 1980

    Article  Google Scholar 

  • Wang, J.R., J.C. Shiue, T.J.Schmugge and E.T.Engman, "Mapping soil moisture with L-band radiometric measurements". Remote Sens. Environ., 27: 305–312, 1989.

    Article  Google Scholar 

  • Wiesnet, D.R., "Remote sensing and its applications to hydrology". In J.C. Rodda (ed.) Facets of Hydrology, John Wiley & Sons, London, 368pp, 1976.

    Google Scholar 

  • Wilheit, T.T., Jr., Radiative Transfer in a plane stratified dielectric, NASA Report X-911–75–66, Goddard Space Flight Center, Greenbelt, MD, 19 pp., 1975.

    Google Scholar 

  • Wood, E. F., D.-S. Lin, M. Mancini, D. Thongs, P.A. Troch, T.J. Jackson, J.S. Famiglietti and E.T. Engman, "Intercomparisons between passive and active microwave remote sensing, and hydrological modeling for soil moisture". Adv. Space Res., 13(5): 167–176, 1993.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Engman, E.T. (2000). Soil Moisture. In: Schultz, G.A., Engman, E.T. (eds) Remote Sensing in Hydrology and Water Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59583-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59583-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64036-0

  • Online ISBN: 978-3-642-59583-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics