Skip to main content

A new hydraulic stroke amplifier for microfluidic components

  • Conference paper
Microreaction Technology: Industrial Prospects
  • 862 Accesses

Abstract

A hydraulic stroke amplifier made of silicon is described. The system consists of two membranes made of different materials. Both are connected by a non compressive liquid, which completely fills out a micro cavity. The first membrane act as driving membrane and possesses of a silicon plate and a piezoceramic plate bonded together. Applying a voltage onto the piezoceramic plate a pressure will be generated into all directions of the cavity. This pressure forces the output membrane to bend in a direction opposite to the cavity. In contradiction to the first membrane, the output membrane is flabby in bending and very small in cross section. The complete volume shift will be given to the bending of the second membrane due to that and the stiffness of the surrounding walls. Stroke amplifications can be achieved as result. In the experiments we found strokes at the output membrane in a range between 60μm and 120μm depending on the pressure generated at the driving membrane. These values are corresponding with an amplification factor of 20 and more in the idling cycle. The device is made by silicon technologies and adapted microtechnologies. It can be advantageously used in several applications due to the material properties of the output membrane. New designs of micropumps, microvalves and other devices using this new working principle are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bart et al. (1990), Microfabricated electrohydrodynamic pumps, in: Sensors & Actuators A, 21–23 (1990), p. 193–197.

    Google Scholar 

  2. Bosch et al. (1993), A silicon microvalve with combined electromagnetic/electrostatic actuation, in: Sensors & Actuators A, 37–38 (1993), p. 684–692.

    Google Scholar 

  3. Ahn, Allen (1995), Fluid micropumps based on rotary magnetic actuators, in: MEMS’ 95, proceedings, Amsterdam, 408–412.

    Google Scholar 

  4. van de Pol, F.; Breedfeld, P. (1990), Bond-Graph modeling of an electro-thermo- pneumatic micropump, in: MME, Berlin 1990, S. 19–24.

    Google Scholar 

  5. Sato, Shikida (1994), An electrostatically actuated gas valve with an S-shaped film element, in: J. Micromech. Microeng., 4 (1994), p. 205–209.

    Article  CAS  Google Scholar 

  6. Wagner, B.; Quenzer, H. (1996), Bistable microvalve with pneumatically coupled membranes, in: IEEE [Hrsg.], MEMS’ 96, proceedings, San Diego, 384–388.

    Google Scholar 

  7. Schwesinger, N ., Planarer Tintenstrahldruckkopf mit piezokeramischem Antrieb, in: Feinwerktechnik Mikrotechnik Meßtechnik F & M, 101. Aufl., 1993, 456–460.

    Google Scholar 

  8. Schwesinger, Bechtel (1998); Micropump for viscous liquids and muds, in: SPIE-proceedings vol. 3515, Santa Clara, 40–45.

    Google Scholar 

  9. Forke (1991), Eine geregelte Membranpumpe als mikrosystemtechnische Lösung, in: Erstes Symp. Mikrosystemtechnik, Regensburg, 1991, S. 131–140

    Google Scholar 

  10. Hirata, S.; Ishii, Y. (1996), An ink-jet using diaphragm microactuator, in: IEEE [Hrsg.], MEMS’ 96, proceedings, San Diego, 418–423.

    Google Scholar 

  11. Jerman (1991 a), Electrical-Activated, Normally-closed Diaphragma Valves, in: Transducers 1991, Technical Digest p. 1045–1048.

    Google Scholar 

  12. Judy et al. (1991), Surface micromachined micromechanical membrane pump, in: MEMS’ 91, proceedings, 182–186.

    Google Scholar 

  13. Richter, Zengerle (1993), Properties and applications of a membrane pump with electrostatic drive, in: “Actuator 93” Bremen 1993, p. 28–33.

    Google Scholar 

  14. Stemme, Stemme (1993); A novel piezoelectric Valve-less Fluid Pump, in: Transducers 1993, digest p. 110–113, Yokohama.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schwesinger, N., Pobering, S. (2000). A new hydraulic stroke amplifier for microfluidic components. In: Ehrfeld, W. (eds) Microreaction Technology: Industrial Prospects. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59738-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59738-1_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64104-6

  • Online ISBN: 978-3-642-59738-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics