Skip to main content

Role of prefrontal cortex in a network for arbitrary visuomotor mapping

  • Chapter
Executive Control and the Frontal Lobe: Current Issues

Abstract

In arbitrary visuomotor mapping, an object instructs a particular action or target of action, but does so in a particular way. In other forms of visuomotor control, the object is either the target of action (termed standard mapping) or its location provides the information needed for targeting (termed transformational mapping). By contrast, in arbitrary mapping, the object’s location bears no systematic spatial relationship with the action. Neuropsychological and neurophysiological investigation has, in large part, identified the neural network that underlies the rapid acquisition and performance of arbitrary visuomotor mappings. This network consists of parts of the premotor (PM) and prefrontal (PF) cortex, the hippocampal system (HS), and the basal ganglia (BG). Here, we propose specialized contributions of the network’s different components to its overall function. To do so, we invoke the concept of distributed information-processing architectures, or modules, which may involve a variety of neural structures. According to this view, recurrent neural networks involving cortex, basal ganglia, and thalamus operate largely in parallel. Each of these interacting networks can be termed a cortical-BG module. A large number of these modules include PM neurons, and they can be termed PM cortical-BG modules. A comparable number include PF neurons, termed PF cortical-BG modules. We propose that PM and PF cortical-BG modules compute specific object-to-action mappings, in which the network learns the action associated with a given input. These mappings serve as specific solutions to arbitrary visuomotor mapping problems. However, they are also exemplars of more abstract rules, such as the knowledge that nonspatial visual information (e.g., color) can guide the choice of action. We propose that PF cortical-BG modules subserve abstract rules of this kind, along with other problem-solving strategies. This view should not be taken to imply that the PF network lacks the capacity to compute specific mappings, but rather that it has higher-order mapping functions in addition to its lower-order ones. Furthermore, it seems likely that PF provides PM with pertinent sensory information. The hippocampal system appears to play a role parallel to that of both neocortical-BG networks discussed here. However, in accord with several models, it operates mainly in the intermediate term, pending the consolidation of the relevant information in those neocortical-BG networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asaad WF, Rainer G, Miller EK (1998) Neural activity in the primate prefrontal cortex during associative learning. Neuron 21:1399–1407

    Article  PubMed  CAS  Google Scholar 

  • Bickerton D (1992) Language and species. University Chicago Press, Chicago

    Google Scholar 

  • Bracke-Tolkmitt R, Linden A, Canavan AGM, Rockstroh B, Scholz E, Wessel K, Diener H-C (1989) The cerebellum contributes to mental skills. Behav Neurosci 103:442–446

    Article  Google Scholar 

  • Buckley MJ, Gaffan D (1997) Impairment of visual object-discrimination learning after perirhinal cortex ablation. Behav Neurosci 111:467–475

    Article  PubMed  CAS  Google Scholar 

  • Buckley MJ, Gaffan D (1998a) Perirhinal cortex ablation impairs configurai learning and paired-associate learning equally. Neu-ropsychologia 36:535–546

    Article  CAS  Google Scholar 

  • Buckley MJ, Gaffan D (1998b) Perirhinal cortex ablation impairs visual object identification. J Neurosci 18:2268–2275

    PubMed  CAS  Google Scholar 

  • Buckley MJ, Gaffan D, Murray EA (1997) Functional double dissociation between two inferior temporal cortical areas: perirhinal cortex versus middle temporal gyrus. J Neurophysiol 77:587–598

    PubMed  CAS  Google Scholar 

  • Burns LH, Everitt BJ, Robbins TW (1999) Effects of excitotoxic lesions of the basolateral amygdala on conditional discrimination learning with primary and conditioned reinforcement. Behav Brain Res 100:123–133

    Article  PubMed  CAS  Google Scholar 

  • Bussey TJ (1996) Functions of the cingulate cortex in learning and memory in the rat. Doctoral dissertation, University of Cambridge, Cambridge, U.K.

    Google Scholar 

  • Bussey TJ, Duck J, Muir JL, Aggleton JP (2000) Distinct patterns of behavioral impairments resulting from fornix transection or neurotoxic lesions of the perirhinal and postrhinal cortices in the rat. Behav Brain Res (in press)

    Google Scholar 

  • Bussey TJ, Muir JL, Everitt BJ, Robbins TW (1996) Dissociable effects of anterior and posterior cingulate cortex lesions on the acquisition of a conditional visual discrimination: facilitation of early learning vs. impairment of late learning. Behav Brain Res 82:45–56

    Article  PubMed  CAS  Google Scholar 

  • Bussey TJ, Muir JL, Everitt BJ, Robbins TW (1997) Triple dissociation of anterior cingulate, posterior cingulate, and medial frontal cortices on visual discrimination tasks using a touchscreen testing procedure for the rat. Behav Neurosci 111:920–936

    Article  PubMed  CAS  Google Scholar 

  • Cahusac PMB, Rolls ET, Miyashita Y, Niki H (1993) Modification of the responses of hippocampal neurons in the monkey during the learning of a conditional spatial response task. Hippocampus 3:29–42

    Article  PubMed  CAS  Google Scholar 

  • Canavan AGM, Nixon PD, Passingham RE (1989) Motor learning in monkeys (Macaca fascicularis) with lesions in motor thalamus. Exp Brain Res 77:113–126

    Article  PubMed  CAS  Google Scholar 

  • Canavan AGM, Sprengelmeyer R, Diener HC, Homberg V (1994) Conditional associative learning is impaired in cerebellar disease in humans. Behav Neurosci 108:475–485

    Article  PubMed  CAS  Google Scholar 

  • Carmichael ST, Price JL (1996) Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. J Comp Neurol 371:179–207

    Article  PubMed  CAS  Google Scholar 

  • Chen LL, Wise SP (1995) Neuronal activity in the supplementary eye field during acquisition of conditional oculomotor associations. J Neurophysiol 73:1101–1121

    PubMed  CAS  Google Scholar 

  • Chen LL, Wise SP (1996) Evolution of directional preferences in the supplementary eye field during acquisition of conditional oculomotor associations. J Neurosci 16:3067–3081

    PubMed  CAS  Google Scholar 

  • Chen Y-C, Thaler D, Nixon PD, Stern C, Passingham RE (1995) The functions of the medial premotor cortex (SMA). II. The timing and selection of learned movements. Exp Brain Res 102:461–473

    Article  PubMed  CAS  Google Scholar 

  • Collins P, Roberts AC, Dias R, Everitt BJ, Robbins TW (1998) Perseveration and strategy in a novel spatial self-ordered sequencing task for nonhuman primates: effects of excitotoxic lesions and dopamine depletions of the prefrontal cortex. J Cogn Neurosci 10:332–354

    Article  PubMed  CAS  Google Scholar 

  • Donoghue JP, Wise SP (1982) The motor cortex of the rat: cytoarchi-tecture and microstimulation mapping. J Comp Neurol 212:76–88

    Article  PubMed  CAS  Google Scholar 

  • Drepper J, Timmann D, Kolb FP, Diener HC (1999) Non-motor associative learning in patients with isolated degenerative cerebellar disease. Brain 122:87–97

    Article  PubMed  Google Scholar 

  • Eacott MJ, Gaffan D (1992) Inferotemporal-frontal disconnection: the uncinate fascicle and visual associative learning in monkeys. Eur J Neurosci 4:1320–1332

    Article  PubMed  Google Scholar 

  • Gaffan D (1977) Response coding in recall of colours by monkeys. Q J Exp Psychol 29:597–605

    Article  PubMed  CAS  Google Scholar 

  • Gaffan D, Harrison S (1988) Inferotemporal-frontal disconnection and fornix transection in visuomotor conditional learning by monkeys. Behav Brain Res 31:149–163

    Article  PubMed  CAS  Google Scholar 

  • Gaffan D, Harrison S (1989) A comparison of the effects of fornix transection and sulcus principalis ablation upon spatial learning by monkeys. Behav Brain Res 31:207–220

    Article  PubMed  CAS  Google Scholar 

  • Gaffan D, Murray EA, Fabre-Thorpe M (1993) Interaction of the amygdala with the frontal lobe in reward memory. Eur J Neurosci 5:968–975

    Article  PubMed  CAS  Google Scholar 

  • Germain L, Lamarre Y (1993) Neuronal activity in the motor and premotor cortices before and after learning the associations between auditory stimuli and motor responses. Brain Res 611:175–179

    Article  PubMed  CAS  Google Scholar 

  • Gutnikov SA, Ma YY, Gaffan D (1997) Temporo-frontal disconnection impairs visual-visual paired association learning but not configurai learning in macaque monkeys. Eur J Neurosci 9:1524–1529

    Article  PubMed  CAS  Google Scholar 

  • Halsband U, Passingham RE (1982) The role of premotor and parietal cortex in the direction of action. Brain Res 240: 368–372

    Article  PubMed  CAS  Google Scholar 

  • Heit G, Smith ME, Halgren E (1988) Neural encoding of individual words and faces by the human hippocampus and amygdala. Nature 333:773–776

    Article  PubMed  CAS  Google Scholar 

  • Hockett CF (1960) Principles of animal communications. In: Lanyon WF, Tavolga WN (eds) Animal sounds and communication. Am Inst Biological Sci Washington, DC, pp 392–430

    Google Scholar 

  • Holland PC (1991) Transfer of control in ambiguous discriminations. J Exp Psychol: Anim Behav Processes 17:231–248

    Article  CAS  Google Scholar 

  • Houk JC, Wise SP (1995) Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. Cereb Cortex 5:95–110

    Article  PubMed  CAS  Google Scholar 

  • Li BM, Inase M, Takashima T, Iijima T (1997) Potentiation of neuronal responses to well-learned cues in the inferior prefrontal cortex during conditional visuomotor learning. Soc Neurosci Abstr 23:1615

    Google Scholar 

  • Lieberman P (1991) Uniquely human: the evolution of speech, thought, and selfless behavior. Harvard University Press, Cambridge

    Google Scholar 

  • Markson L, Bloom P (1997) Evidence against a dedicated system for word learning in children. Nature 385:813–815

    Article  PubMed  CAS  Google Scholar 

  • Marston HM, Everitt BJ, Robbins TW (1993) Comparative effects of excitotoxic lesions of the hippocampus and septum/diagonal band on conditional visual discrimination and spatial learning. Neuropsychologia 31:1099–1118

    Article  PubMed  CAS  Google Scholar 

  • Meunier M, Bachevalier J, Mishkin M, Murray EA (1993) Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys. J Neurosci 13:5418–5432

    PubMed  CAS  Google Scholar 

  • Mitz AR, Godschalk M, Wise SP (1991) Learning-dependent neuronal activity in the premotor cortex of rhesus monkeys. J Neurosci 11:1855–1872

    PubMed  CAS  Google Scholar 

  • Muir JL, Bussey TJ, Everitt BJ, Robbins TW (1996) Dissociable effects of AMPA-induced lesion of the vertical limb diagonal band of Broca on performance of the 5-choice serial reaction time task and on acquisition of a conditional visual discrimination. Behav Brain Res 82:31–44

    Article  PubMed  CAS  Google Scholar 

  • Murray EA, Bussey TJ (1999) Perceptual-mnemonic functions of the perirhinal cortex. Trends Cogn Sci 3:142–151

    Article  PubMed  Google Scholar 

  • Murray EA, Wise SP (1996) Role of the hippocampus plus subjacent cortex but not amygdala in visuomotor conditional learning in rhesus monkeys. Behav Neurosci 110:1261–1270

    Article  PubMed  CAS  Google Scholar 

  • Murray EA, Wise SP (1997) Role of orbitoventral prefrontal cortex in conditional motor learning. Soc Neurosci Abstr 23:11

    Google Scholar 

  • Nixon PD, Passingham RE (1999) The cerebellum and cognition: cerebellar lesions impair sequence learning but not conditional motor learning in monkeys. Neuropsychologia 11: 4070–4080

    CAS  Google Scholar 

  • Noe A, Welker W, Johnson JI (1999) Comparative mammalian brain collection, http://www.neurophys.wisc.edu/brain/

    Google Scholar 

  • Pandya DN, Kuypers HGJM (1969) Cortico-cortical connections in the rhesus monkey. Brain Res 13:13–36

    Article  PubMed  CAS  Google Scholar 

  • Parker A, Gaffan D (1997) Frontal/temporal disconnection in monkeys: memory for strategies and memory for visual objects. Soc Neurosci Abstr 23:11

    Google Scholar 

  • Parker A, Gaffan D (1998) Memory after frontal/temporal disconnection in monkeys: conditional and non-conditional tasks, unilateral and bilateral frontal lesions. Neuropsychologia 36: 259–271

    Article  PubMed  CAS  Google Scholar 

  • Passingham RE (1972) Non-reversal shifts after selective prefrontal ablations in monkeys (Macaca mulatta). Neuropsychologia 10:41–46

    Article  PubMed  CAS  Google Scholar 

  • Passingham RE (1987) From where does the motor cortex get its instruction? In: Wise SP (ed) Higher brain functions. Wiley, New York, pp 67–97

    Google Scholar 

  • Passingham RE, Toni I, Rushworth MFS (2000) Specialisation within the prefrontal cortex: the ventral prefrontal cortex and associative learning. Exp Brain Res DOI 10.1007/s002210000405

    Google Scholar 

  • Passingham RE, Myers C, Rawlins N, Lightfoot V, Fearn S (1988) Premotor cortex in the rat. Behav Neurosci 102:101–109

    Article  PubMed  CAS  Google Scholar 

  • Passingham RE, Toni I, Schluter N, Rushworth MF (1998) How do visual instructions influence the motor system? Novartis Symposium. In: Goode J (ed) Sensory guidance of movement. Wiley, Chichester, pp 129–141

    Google Scholar 

  • Petrides M (1982) Motor conditional associative-learning after selective prefrontal lesions in the monkey. Behav Brain Res 5: 407–413

    Article  PubMed  CAS  Google Scholar 

  • Petrides M (1985) Deficits on conditional associative-learning tasks after frontal- and temporal-lobe lesions in man. Neuropsychologia 23:601–614

    Article  PubMed  CAS  Google Scholar 

  • Petrides M (1987) Conditional learning and the primate frontal cortex. In: Perecman E (ed) The frontal lobes revisited. IRBN Press, New York, pp 91–108

    Google Scholar 

  • Petrides M (1997) Visuo-motor conditional associative learning after frontal and temporal lesions in the human brain. Neuropsychologia 35:989–997

    Article  PubMed  CAS  Google Scholar 

  • Pickett ER, Kuniholm E, Protopapas A, Friedman J, Lieberman P (1998) Selective speech motor, syntax and cognitive deficits associated with bilateral damage to the putamen and the head of the caudate nucleus: a case study. Neuropsychologia 36: 173–188

    Article  PubMed  CAS  Google Scholar 

  • Preuss TM (1995) Do rats have prefrontal cortex? The Rose-Woolsey-Akert program reconsidered. J Cogn Neurosci 7: 1–24

    Article  Google Scholar 

  • Quirk RH, Parkinson JA, Everitt BJ, Robbins TW (1999) Prefrontal and ventral striatal lesions produce dissociable deficits on a conditional learning task in the rat. Soc Neurosci Abstr 25:890

    Google Scholar 

  • Reading PJ, Dunnett SB, Robbins TW (1991) Dissociable roles of the ventral, medial and lateral striatum on the acquisition and performance of a complex stimulus-response habit. Behav Brain Res 45:147–161

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW, Giardini V, Jones GH, Reading P, Sahakian BJ (1990) Effects of dopamine depletion from the caudate-putamen and nucleus accumbens septi on the acquisition and performance of a conditional discrimination task. Behav Brain Res 38:243–261

    Article  PubMed  CAS  Google Scholar 

  • Rupniak NMJ, Gaffan D (1987) Monkey hippocampus and learning about spatially directed movements. J Neurosci 7:2331–2337

    PubMed  CAS  Google Scholar 

  • Rushworth MFS, Nixon PD, Eacott MJ, Passingham RE (1997a) Ventral prefrontal cortex is not essential for working memory. J Neurosci 17:4829–4838

    PubMed  CAS  Google Scholar 

  • Rushworth MFS, Nixon PD, Passingham RE (1997b) Parietal cortex and movement. I. Movement selection and reaching. Exp Brain Res 117:292–310

    Article  PubMed  CAS  Google Scholar 

  • Sutton D, Jürgens U (1988) Neural control of vocalization. Comp Primate Biol 4:625–647

    Google Scholar 

  • Sziklas V, Lebel S, Petrides M (1998) Conditional associative learning and the hippocampal system. Hippocampus 8:131–137

    Article  PubMed  CAS  Google Scholar 

  • Thaler D, Chen Y-C, Nixon PD, Stern C, Passingham RE (1995) The functions of the medial premotor cortex (SMA). I. Simple learned movements. Exp Brain Res 102:445–460

    Article  PubMed  CAS  Google Scholar 

  • Tremblay L, Schultz W (1996) Neuronal activity in primate orbitofrontal cortex during learning. Soc Neurosci Abstr 22: 1388

    Google Scholar 

  • Tremblay L, Hollerman JR, Schultz W (1998) Modifications of reward expectation-related neuronal activity during learning in primate striatum. J Neurophysiol 80:964–977

    PubMed  CAS  Google Scholar 

  • Tucker J, Harding AE, Jahanshahi M, Nixon PD, Rushworth M, Quinn NP, Thompson PD, Passingham RE (1996) Associative learning in patients with cerebellar ataxia. Behav Neurosci 110:1229–1234

    Article  PubMed  CAS  Google Scholar 

  • Vriezen ER, Moscovitch M (1990) Memory for temporal order and conditional associative-learning in patients with Parkinson’s disease. Neuropsychologia 28:1283–1293

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M (1990) Prefrontal unit activity during associative learning in the monkey. Exp Brain Res 80:296–309

    Article  PubMed  CAS  Google Scholar 

  • Webster MJ, Bachevalier J, Ungerleider LG (1994) Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb Cortex 5:470–483

    Article  Google Scholar 

  • Winocur G (1997) Hippocampal lesions alter conditioning to conditional and contextual stimuli. Behav Brain Res 88:219–229

    Article  PubMed  CAS  Google Scholar 

  • Winocur G, Eskes G (1998) Prefrontal cortex and caudate nucleus in conditional associative learning: dissociated effects of selective brain lesions in rats. Behav Neurosci 112:89–101

    Article  PubMed  CAS  Google Scholar 

  • Wise SP, Murray EA (1999) Role of the hippocampal system in conditional motor learning: mapping antecedents to action. Hippocampus 9:101–117

    Article  PubMed  CAS  Google Scholar 

  • Wise SP, di Pellegrino G, Boussaoud D (1996a) The premotor cortex and nonstandard sensorimotor mapping. Can J Physiol Pharmacol 74:469–482

    PubMed  CAS  Google Scholar 

  • Wise SP, Murray EA, Gerfen CR (1996b) The frontal cortex — basal ganglia system in primates. Crit Rev Neurobiol 10:317–356

    PubMed  CAS  Google Scholar 

  • Wise SP, Boussaoud D, Johnson PB, Caminiti R (1997) The premotor and parietal cortex: corticocortical connectivity and combinatorial computations. Annu Rev Neurosci 20:25–42

    Article  PubMed  CAS  Google Scholar 

  • Zilles K (1985) The cortex of the rat: a stereotaxic atlas. Springer, Berlin Heidelberg New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag

About this chapter

Cite this chapter

Murray, E.A., Bussey, T.J., Wise, S.P. (2000). Role of prefrontal cortex in a network for arbitrary visuomotor mapping. In: Schneider, W.X., Owen, A.M., Duncan, J. (eds) Executive Control and the Frontal Lobe: Current Issues. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59794-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59794-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64128-2

  • Online ISBN: 978-3-642-59794-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics