Skip to main content

Anti-αgalactosyl (Anti-Gal) Antibody Damage Beyond Hyperacute Rejection

  • Chapter
Xenotransplantation

Abstract

Xenotransplantation of pig tissues and organs into humans, or monkeys, is subjected to immunological incompatibilities greater than those encountered with rodent recipients. This is because of the ubiquitous presence of the natural anti-agalactosyl (anti-Gal) antibody in Old World monkeys, apes and humans versus the abundant production of the α-galactosyl epitope (i.e., Galα1–3Galß1–4GlcNAc-R) in nonprimate mammals. This carbohydrate epitope is the natural ligand for anti-Gal, and the binding of this natural antibody to the α-galactosyl epitope on the porcine cells results in the immune rejection of the xenograft [1]. Binding of anti-Gal IgM to porcine cells induces, in general, complement-mediated lysis of the cells [2–4]. Furthermore, in vivo neutralization of anti-Gal by melibiose (Galα1–6Glc) [5], or removal of serum anti-Gal by adsorption on an α-galactosyl epitope column [6], results in the elimination of hyperacute rejection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Galili U. Interaction of the natural anti-Gal antibody with a-galactosyl epitopes: A major obstacle for xenotransplantation in humans. Immunol Today 14: 480, 1993

    Article  PubMed  CAS  Google Scholar 

  2. Good AH, Cooper DKC, Malcolm AJ, et al. Identification of carbohydrate structures which bind human anti-porcine antibodies: Implication for discordant xenografting in man. Transplant. Proc. 24: 559, 1992

    PubMed  CAS  Google Scholar 

  3. Sandrin M, Vaughan HA, Dabkowski PL, McKenzie IFC. Anti-pig IgM antibodies in human serum react predominantly with Galα1–3Gal epitopes. Proc. Natl. Acad. Sci. USA 90: 11391, 1993

    Article  PubMed  CAS  Google Scholar 

  4. Collins BH, Cotterell AH, McCurry KR, et al. Cardiac xenografts between primate species provide evidence for the importance of the a-galactosyl determinant in hyperacute rejection. J. Immunol. 154: 5500, 1995

    PubMed  CAS  Google Scholar 

  5. Ye Y, Neethling FA, Niekrasz M, et al. Evidence that intravenously administered a-galactosyl carbohydrates reduce baboon serum cytotoxicity to pig kidney cells (PK15) and transplanted pig hearts. Transplantation 58: 330, 1994

    PubMed  CAS  Google Scholar 

  6. Sablinski T, Monroy R, Bailin M, et al. Absorption of preformed primate anti-swine antibodies by extracorporeal perfusion through Galα(1,3)Gal column. Presented to the Third International Congress for Xenotransplantation, Boston 1995. Transplant. Proc. In press

    Google Scholar 

  7. Cozzi E, White DJG. The generation of transgenic pigs as potential organ donors for humans. Nature Med 1: 964, 1995

    Article  PubMed  CAS  Google Scholar 

  8. McCurry KR, Kooyman DL, Alvarado CG, et al. Human complement regulatory proteins protect swine to primate cardiac xenografts from human injury. Nature Med. 1: 423, 1995

    Article  PubMed  CAS  Google Scholar 

  9. Galili U, Rachmilewitz EA, Peleg A, Flechner I. A unique natural human IgG antibody with anti-a-galactosyl specificity. J. Exp. Med. 160: 1519, 1984

    Article  PubMed  CAS  Google Scholar 

  10. Galili U, Clark MR, Shohet SB, Buehler J, Macher BA. Evolutionary relationship between the anti-Gal antibody and the Galα1→3Gal epitope in primates. Proc. Natl. Acad. Sci. USA 84: 1369, 1987

    Article  PubMed  CAS  Google Scholar 

  11. Kujundzic M, Koren E, Neethling FA, et al. Variability of anti-αGal antibodies in human serum and their relation to serum cytotoxicity against pig cells. Xenotransplantation 1: 58, 1994

    Article  Google Scholar 

  12. Galili U, Tibell A, Samuelsson B, Rydberg L, Groth CG. Increased anti-Gal activity in diabetic patients transplanted with fetal porcine islet cell clusters. Transplantation 59: 1549, 1995

    PubMed  CAS  Google Scholar 

  13. Parker W, Bruno O, Holzkecht ZE, Platt JE. Characterization and affinity isolation of xenoreactive human natural antibodies. J. Immunol. 153: 3791, 1994

    PubMed  CAS  Google Scholar 

  14. Hamadeh RM, Galili U, Zhou P, Griffis JM. Anti-a-galactosyl immunoglobulin A (IgA), IgG, and IgM in human secretions. Clin. Diagnost. Lab Immunol. 2: 125, 1995

    CAS  Google Scholar 

  15. Galili U, Macher BA, Buehler J, Shohet SB. Human natural anti-a-galactosyl IgG. II. The specific recognition of α(1 →3)-linked galactose residues. J. Exp. Med. 162: 573, 1985

    Article  PubMed  CAS  Google Scholar 

  16. Galili U, Buehler J, Shohet SB, Macher BA. The human natural anti-Gal IgG. III. The subtlety of immune tolerance in man as demonstrated by crossreactivity between natural anti-Gal and anti-B antibodies. J. Exp. Med. 165: 693, 1987

    Article  PubMed  CAS  Google Scholar 

  17. Weislander J, Mannson O, Kallin E, et al. Specificity of human antibodies against Galα1–3Gal carbohydrate epitope and distinction from natural antibodies reacting with Galα1–2Gal or Galα1–4Gal. Glycoconjugate J. 7: 85, 1990

    Article  Google Scholar 

  18. Galili U. Evolution and pathophysiology of the human natural anti-Gal antibody. Springer Seminars in Immunopathology 15: 155, 1993

    Article  PubMed  CAS  Google Scholar 

  19. Wang L, Anaraki F, Henion TR, Galili U. Variations in activity of the human natural anti-Gal antibody in young and elderly populations. J. Gerontol. (Med. Sci.) 50A: M227, 1995

    CAS  Google Scholar 

  20. Galili U, Mandrell RE, Hamadeh RM, Shohet SB, Griffis JM. Interaction between human natural anti-a-galactosyl immunoglobulin G and bacteria of the human flora. Infect. Immun. 56: 1730, 1988

    PubMed  CAS  Google Scholar 

  21. Galili U, Anaraki F, Thall A, Hill-Black C, Radic M. One percent of circulating B lymphocytes are capable of producing the natural anti-Gal antibody. Blood 82: 2485, 1993

    PubMed  CAS  Google Scholar 

  22. Wang L, Radic MZ, Galili U. Human anti-Gal heavy chain genes: Preferential use of VH3 and the presence of somatic mutations. J. Immunol. 155: 1276, 1995

    PubMed  CAS  Google Scholar 

  23. Galili U, Gregory CR, Morris RE. Contribution of anti-Gal to primate and human IgG binding to porcine endothelial cells. Transplantation 60: 210, 1995

    PubMed  CAS  Google Scholar 

  24. Galili U, Shohet SB, Kobrin E, Stults CLM, Macher BA. Man, apes, and Old World monkeys differ from other mammals in the expression of α-galactosyl epitopes on nucleated cells. J. Biol. Chem. 263: 17755, 1988

    PubMed  CAS  Google Scholar 

  25. Thall A, Etienne-Decerf J, Winand R, Galili U. The a-galactosyl epitope on mammalian thyroid cells. Acta Endocrin. 124: 692, 1991

    CAS  Google Scholar 

  26. Basu M, Basu S. Enzymatic synthesis of blood group related pentaglycosyl ceramide by an α-galactosyltransferase. J. Biol. Chem. 248: 1700, 1973

    PubMed  CAS  Google Scholar 

  27. Blake DD, Goldstein IJ. An α-D-galactosyltransferase in Ehrlich ascites tumor cells: Biosynthesis and characterization of a trisaccharide (α-D-galacto(1–3)-N-acetyllactosa-mine). J. Biol. Chem. 256: 5387, 1981

    PubMed  CAS  Google Scholar 

  28. Blanken WM, van den Eijnden DH. Biosynthesis of terminal Galα1–3Galß1–4GlcNAc-R oligosaccharide sequence on glycoconjugates: Purification and acceptor specificity of a UDP-Gal: N-acetyllactosamine α1,3galactosyltransferase. J. Biol. Chem. 260: 12972, 1985

    Google Scholar 

  29. Joziasse DH, Shaper JH, van den Eijnden DH, Van Tunen AH, Shaper NL. Bovine α1–3galactosyltransferase: Isolation and characterization of a cDNA clone. Identification of homologous sequences in human genomic DNA. J. Biol. Chem. 264: 14290, 1989

    PubMed  CAS  Google Scholar 

  30. Larsen RD, Rajan VP, Ruff M, et al. Isolation of a cDNA encoding murine UDP galactose: ßD-galactosyl-1,4-N-acetyl-D-glucosaminide α1,3-galactosyltransferase: Expression cloning by gene transfer. Proc. Natl. Acad. Sci. USA 86: 8227, 1989

    Article  PubMed  CAS  Google Scholar 

  31. Sandrin MS, Dabkowski PL, Henning MM, Mouthouris E, McKenzie IFC. Characterization of cDNA clones for porcine α1,3galactosyltransferase. The enzyme generating the Galα(1,3)Gal epitope. Xenotransplantation 41: 101, 1995

    Google Scholar 

  32. Strahan KM, Gu F, Preece AF, et al. DNA sequence and chromosome localization of pig α1,3galactosyltransferase. Immunogenetics 41: 101, 1995

    Article  PubMed  CAS  Google Scholar 

  33. Henion TR, Macher BA, Anaraki F, Galili U. Defining the minimal size of catalytically active primate α1,3galactosyltransferase: Structure function studies on the recombinant truncated enzyme. Glycobiology 4: 193, 1994

    Article  PubMed  CAS  Google Scholar 

  34. Larsen RD, Rivera-Marrero CA, Ernst LK, Cummings RD, Lowe JB. Frameshift and nonsense mutations in a human genomic sequence homologous to a murine UDP-Galß-D-Gal(1,4)-D-GlcNAcα(1,3) galactosyltransferase cDNA. J. Biol. Chem. 265: 7055, 1990

    PubMed  CAS  Google Scholar 

  35. Joziasse DH, Shaper JH, Jabs EW, Shaper NL. Characterization of an α1 → 3-galactosyl-transferase homologue on human chromosome 12 that is organized as a processed pseudogene. J. Biol. Chem. 266: 6991, 1991

    PubMed  CAS  Google Scholar 

  36. Galili U, Swanson K. Gene sequences suggest inactivation of α1,3 galactosyltransferase in catarrhines after the divergence of apes from monkeys. Proc. Natl. Acad. Sci. USA 88: 7401, 1991

    Article  PubMed  CAS  Google Scholar 

  37. Galili U, Andrews P. Suppression of a-galactosyl epitopes synthesis and production of the natural anti-Gal antibody: A major evolutionary event in ancestral Old World primates. J. Human Evolution 29: 433, 1995

    Article  Google Scholar 

  38. Geyer R, Geyer H, Strim S, et al. Major oligosaccharides in the glycoprotein of Friend murine leukemia virus: Structure elucidation by one and two dimensional proton nuclear magnetic resonance and methylation analysis. Biochemistry 23: 5628, 1984

    Article  PubMed  CAS  Google Scholar 

  39. Repik PM, Strizki JM, Galili U. Differential host dependent expression of a-galactosyl epitopes on viral glycoproteins: A study of eastern equine encephalitis virus as a model. J. General Virol. 75: 1177, 1994

    Article  CAS  Google Scholar 

  40. Rother RP, Fodor WL, Springhorn JP, et al. A novel mechanism of retrovirus inactivation in human serum mediated by anti-α-galactosyl natural antibody. J. Exp. Med. 182: 1345, 1995

    Article  PubMed  CAS  Google Scholar 

  41. Couto AS, Conclaves MF, Colli W, deLederkremer RM. The N-linked carbohydrate chain of the 85-kilodalton glycoprotein from Trypanosoma cruzi trypomastigotes contains sialyl, fucosyl and galactosyl (α1–3) galactose units. Mol. Biochem. Parasitol. 39: 101, 1990

    Article  PubMed  CAS  Google Scholar 

  42. Almedia IC, Ferguson MAJ, Schenkman S, Travassos LR. Lytic anti-a-galactosyl anti-bodied from patients with chronic Chagas’ disease recognize novel O-linked oligosaccharides on mucine-like glycosyl-phosphatidylinositol-anchored glycoproteins of Trypanosoma cruzi. Biochem. J. 304: 793, 1994

    Google Scholar 

  43. Andrews P. Evolution and environment in hominoidea. Nature 360: 641, 1992

    Article  PubMed  CAS  Google Scholar 

  44. Neethling FA, Koren E, Ye Y, et al. Protection of pig kidney (PK15) cells from the cytotoxic effect of anti-pig antibodies by α-galactosyl oligosaccharides. Transplantation 57: 959, 1994

    Article  PubMed  CAS  Google Scholar 

  45. Schaapherder AFM, Daha MR, LeBulte MJW, van der Woude FJ, Gooszen HG. Antibody dependent cell-mediated cytotoxicity against porcine endothelium induced by a majority of human sera. Transplantation 57: 1376, 1994

    Article  PubMed  CAS  Google Scholar 

  46. Winand RJ, Anaraki F, Etienne-Decerf J, Galili U. Xenogeneic thyroid-stimulating hormone-like activity of the human natural anti-Gal antibody. Interaction of anti-Gal with porcine thyrocytes and with recombinant human thyroid stimulating hormone receptors expressed on mouse cells. J. Immunol. 151: 3923, 1993

    PubMed  CAS  Google Scholar 

  47. Groth CG, Korgsen O, Tibell A, et al. Transplantation of fetal porcine pancreas to diabetic patients: Biochemical and histological evidence for graft survival. Lancet 344: 1402, 1994

    Article  PubMed  CAS  Google Scholar 

  48. Satake M, Kawagishi N, Rydberg L, et al. Limited specificity of xenoantibodies in diabetic patients transplanted with fetal porcine islet cell clusters. Main antibody reactivity against α-linked galactose-containing epitopes. Xenotransplantation 1: 89, 1994

    Article  Google Scholar 

  49. Sandrin MS, Fodor WL, Mouthouris E, et al. Enzymatic remodeling of carbohydrate surface of a xenogenic cell substantially reduces human antibody binding and complement mediated cytolysis. Nature Med 1: 1261, 1995

    Article  PubMed  CAS  Google Scholar 

  50. Alexandre GPJ, Squifflet JP, DeBruyere M, et al. Present experience in a series of 26 ABO-incompatible living donor renal allografts. Transplant. Proc. 19: 4538, 1987

    PubMed  CAS  Google Scholar 

  51. Sykes M, Lee LA, Sachs DH. Xenograft tolerance. Immunol. Rev. 141: 245, 1994

    Article  PubMed  CAS  Google Scholar 

  52. Thall AD, Maly P, Lowe JB. Oocyte Galα1–3Gal epitopes implicated in sperm adhesion to the zona pellucida glycoprotein ZP3 are not required for fertilization in the mouse. J. Biol. Chem. 270: 21437, 1995

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Galili, U. (1997). Anti-αgalactosyl (Anti-Gal) Antibody Damage Beyond Hyperacute Rejection. In: Cooper, D.K.C., Kemp, E., Platt, J.L., White, D.J.G. (eds) Xenotransplantation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60572-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60572-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64460-3

  • Online ISBN: 978-3-642-60572-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics