Skip to main content

Physiological Factors Predisposing to Neurotoxicity

  • Conference paper
Applied Toxicology: Approaches Through Basic Science

Part of the book series: Archives of Toxicology ((TOXICOLOGY,volume 19))

Abstract

Many factors determine individual susceptibility to toxic agents in addition to their primary interaction with the target site. Absorption, delivery to target tissues, bio-activation, bio-inactivation, elimination, and adaptive or protective responses all play important parts in determining the overall response of the individual. In addition changes in the physiological significance of the function which is disrupted maybe crucially important.

Pulmonary absorption can be limited by ventilation or perfusion, both of which increase with work rate. Tissue uptake can be limited by local blood flow, which is strongly influenced by local functional activity. In areas with a blood-tissue barrier, such as brain and testis, tissue uptake can be strongly influenced by developmental state, protein binding or vascular damage. Metabolic transformation can show marked inter-individual variations at both hepatic and extra-hepatic sites, due to genetic or nutritional influences. The capacity for adaptation to toxicological insult can also vary markedly, depending on functional reserve capacity as well as on inherent plasticity.

Examples used to illustrate these factors include: the influence of motor activity on the toxicity of carbon monoxide; of noise on the ototoxicity of aminoglycoside antibiotics; of brain activity on the neurotoxicity of dinitrobenzene; of acid-base balance on the toxicity of nicotine; and of developmental stage on the neurotoxicity of haloperidol. In addition disease states can influence sensitivity. Thus anaemia sensitises to manganese; calcium deficiency to lead; nerve trauma to hexane; and Wilson’s disease to copper overload.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beal MF, Brouillet E, Jenkins BG, Ferrante RJ, Kowall NW, Miller JM, Storey E, Srivastava R, Rosen BR, Hyman BT (1993) Neurochemical and histological characterisation of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J. Neurosci. 13:4181–4192.

    PubMed  CAS  Google Scholar 

  • Cavanagh JB (1993) Selective vulnerability in acute energy deprivation syndromes. Neuropathol Appl Neurobiol 19:461–470.

    Article  PubMed  CAS  Google Scholar 

  • Cavanagh JB, Harding BN (1994) Pathogenic factors underlying the lesions in Leigh’s disease. Tissue responses to cellular energy deprivation and their clinico-pathological consequences. Brain 127:1357–1376.

    Google Scholar 

  • Cavanagh JB, Nolan CC, Brown AW (1990) Glial cell intrusions actively remove detritus due to toxic chemicals from within nerve cells. Neurotoxicol. 11:1–12.

    CAS  Google Scholar 

  • Cherry NM, Labrèche FP, McDonald JC (1992) Organic brain damage and occupational solvent exposure. British Journal of Industrial Medicine 49: 776–781.

    PubMed  CAS  Google Scholar 

  • Cohr K-H (1986) Uptake and distribution of common industrial solvents. In Riihimaki V, Ulfvarson U (eds) Safety and health aspects of organic solvents. Alan R. Liss Inc., New York, pp 45–60.

    Google Scholar 

  • Didier AD, Loor F (1995) Decreased biotolerability for ivermectin and cyclosporin A in mice exposed to potent p-glycoprotein inhibitors. Int. J. Cancer 63:263–267.

    Article  PubMed  CAS  Google Scholar 

  • Dossing M (1986) Metabolic interactions between organic solvents and other chemicals. Prog. Clin. Biol. Res. 220:97–105.

    PubMed  CAS  Google Scholar 

  • Eddleston M, Mucke L (1993) Molecular profile for reactive astrocytes - implications for their role in neurologic disease. Neurosci. 54:15–36.

    Article  CAS  Google Scholar 

  • Festing MFW (1991) Genetic factors in neurotoxicology and neuropharmacology: a critical evaluation of the use of genetics as a research tool. Experientia 47:990–998.

    Article  PubMed  CAS  Google Scholar 

  • Ghersi-Egea J-F, Leninger-Muller B, Suleman G, Seist G, Minn A (1994) Localisation of drug-metabolising enzyme activities to blood-brain interfaces and circumventricular organs. J. Neurochem.62:1089–1096.

    Article  PubMed  CAS  Google Scholar 

  • Goyer RA (1995) Nutrition and metal toxicity Am. J. Clin. Nutr. 6i:646S–650S.

    Google Scholar 

  • Guerri C (1996) Teratogenic effects of alcohol: current status of animal research and in vitro models. Arch. Toxicol Suppl. 18:71–80.

    PubMed  CAS  Google Scholar 

  • Haag HB, Larson PS (1942) Studies on the fate of nicotine in the body. 1: The effect of pH on the urinary excretion of nicotine by tobacco smokers. J. Pharmacol. Exp. Ther. 76:235–239.

    CAS  Google Scholar 

  • Harpur ES (1982) The pharmacology of ototoxic drugs. Brit. J. Audiol. 16:81–93.

    Article  CAS  Google Scholar 

  • Harpur ES (1986) The inner ear. In Cohen GM (ed) Target Organ Toxicity. CRC Press, Bocca Raton, volume II, pp 125–142.

    Google Scholar 

  • Horita N, Ishii T, Izumiyama Y (1980) Ultrastructure of 6-aminonicotinamide (6AN)- induced lesions in the central nervous system of rats. II. Alterations of the nervous susceptibility with ageing. Acta Neuropathol. (Beri.) 49:19–27.

    Article  CAS  Google Scholar 

  • Jacobs JM, Le Quesne PM (1984) Toxic disorders of the nervous system. In Hume Addams J, Corsellis JAN, Duchen LW (eds) Greenfield’s Neuropathology. Edward Arnold, pp 627–698.

    Google Scholar 

  • Johnson AC, Juntunen L, Nylen P, Borg E, Hoglund G (1988) Effect of interaction between noise and toluene on auditory function in the rat. Acta Otolaryngol. 105:56–63.

    Article  PubMed  CAS  Google Scholar 

  • Lim DJ (1986) Effects of noise and ototoxic drugs at the cellular level in the cochlea: a review. Am. J. Otolaryngol. 7:73–99.

    Article  PubMed  CAS  Google Scholar 

  • Lowndes HE, Philbert MA, Beiswanger M, Kauffman FC, Reuhl KR (1995) Xenobiotic metabolism in the brain as mechanistic bases for neurotoxicity. In Chang LW, Dyer RS (eds) Handbook of neurotoxicology. Marcel Dekker, New York, pp 1–28.

    Google Scholar 

  • Mizuno Y, Ikebe SI, Hattori N, Mochizuki H, Nakagawa-Hattori Y, Kondo T (1994) Studies on the pathogenesis of Parkinson’s disease in Japan Arch. Gerentol. Geriat. 19:105–121.

    Article  CAS  Google Scholar 

  • Morata TC, Dunn DE, Kretschmer LW, Lemasters GK, Keith RW (1993) Effects of occupational exposure to organic solvents and noise on hearing. Scand. J. Environ. Health 19:245–254.

    CAS  Google Scholar 

  • Moretto A, Betrolazzi M, Capodicassa E, Peracia M, Richardson RJ, Scapellato ML, Lotti M (1992) Phenylmethanesulphonyl fluoride elicits and intensifies the clinical expression of neuropathic insults. Arch. Toxicol. 66:67–72.

    Article  PubMed  CAS  Google Scholar 

  • Nyberg S, Dahl ML, Halldin C (1995) A PET study of D2 and 5-HT2 receptor occupancyinduced by risperidone in poor metabolisers of debrisoquin and risperidone. Psychopharmacol. 119:345–348.

    Article  CAS  Google Scholar 

  • Pazdernik T, Cross R, Nelson S, Kamijo Y, Samson F (1994) Is there an energy conservation “system” in brain that protects against the consequences of energy depletion? Neurochem. Res. 19:1393–1400.

    Article  PubMed  CAS  Google Scholar 

  • Pryor GT, Rebert C, Kassay K, Kuiper H, Gordon R (1991) The hearing loss associated with exposure to toluene is not caused by a metabolite. Brain Res. Bull. 27:109–113.

    Article  PubMed  CAS  Google Scholar 

  • Ray DE, Brown AW, Cavanagh JB, Nolan CC, Richards HK, Wylie SP (1992) Functional/metabolic modulation of the brain stem lesions caused by 1,3- dinitrobenzene in the rat. Neurotoxicology 13:379–388.

    PubMed  CAS  Google Scholar 

  • Ray DE, Holton JL, Lister T & Nolan CC (1996) The glio-vascular toxicity of m-dinitrobenzene and related agents: modulation of toxicity by neuronal activation. Arch. Tox. Suppl. 18:140–148.

    CAS  Google Scholar 

  • Relling MV (1989) Polymorphic drug metabolism Clin. Pharmacol. 8:852–863.

    CAS  Google Scholar 

  • Riihimaki V, Pfaffli P, Savolainen K (1979) Kinetics of m-xylene in man. Influence of intermittent physical exercise and changing environmental concentrations on kinetics. Scand. J. Work Environ. Health 5:232–248.

    CAS  Google Scholar 

  • Rodriguez-Zafra M, De Bals MR, Perez-Laso C, Cales J M, Guillamon A, Segovia S (1994) Effects of perinatal diazepam exposure on the sexually dimorphic rat locus coerulus. Neurotoxicol. Teratol. 15:139–144.

    Article  Google Scholar 

  • Romero IA, Lister T, Richards HK, Seville MP, Wylie SP, Ray, DE (1995) Early metabolic changes during m-dinitrobenzene neurotoxicity and the possible role of oxidative stress Free Radical Biol Med 18:311–319.

    CAS  Google Scholar 

  • Rosengarten H, Friedhoff AJ (1979) Enduring changes in dopamine receptor cells of pups from drug administration to pregnant and nursing rats. Science 203:1133–1135.

    Article  PubMed  CAS  Google Scholar 

  • Ryan AF, Bone RC (1982) Non-simultaneous interaction of exposure to noise and kanamycin intoxication in chinchillas. Amer. J. Otolaryngol. 3:264–272.

    Article  CAS  Google Scholar 

  • Scheinberg IH (1988) The neurotoxicity of copper. In Bondy SC, Prasad KN (eds) Metal Neurotoxicity. CRC Press, Florida, pp 56–60.

    Google Scholar 

  • Schinkel AH, Wagenaar E, Mol CAAM, Van Deemter L (1996) P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J. Clin. Investig. 97:2517–2524.

    Article  PubMed  CAS  Google Scholar 

  • Seth PK & Chandra SV (1988) Neurotoxic effects of manganese. In Bondy SC, Prasad KN (eds) Metal Neurotoxicity. CRC Press, Florida, pp 19–33.

    Google Scholar 

  • Sheets LP, Doherty JD, Law MW, Reiter LW, Crofton KM (1994) Age-dependent differences in the susceptibility of rats to deltamethrin. Toxicol. Appl. Pharmacol.126:186–190.

    Google Scholar 

  • Simonati A, Rizzuto N, Cavanagh JB (1983) The effects of 2,5-hexanedione on axonal regeneration after nerve crush in the rat. Acta Neuropathol. 59:216–224.

    Article  PubMed  CAS  Google Scholar 

  • Sloviter RS (1983) ‘Epileptic’ brain damage in rats induced by sustained electrical stimulation of the perforant path. I Acute electrophysiological and light microscopic studies. Brain Res. Bull. 10:675–697.

    CAS  Google Scholar 

  • Steventon GB, Green S, Waring RH, Williams AC (1994) D-penicillamine metabolism in neurodegenerative diseases: an in vivo/in vitro sulphydryl methylation study. Xenobiotica 24:1013–1020.

    Article  PubMed  Google Scholar 

  • Verschoyle RD, Brown AW, Nolan CC, Ray DE, Lister T (1992) A comparison of the acute toxicity, neuropathology and electrophysiology of N, N-diethyl-m-toluamide (DEET) and N, N-dimethyl-2,2-diphenylacetamide (diphenamid) in rats. Fund. & Appl. Toxicol. 18: 79–88.

    Article  CAS  Google Scholar 

  • Young JS, Upchurch MB, Kaufman MJ, Fechter LD (1987) Carbon monoxide exposure potentiates high frequency auditory threshold shifts induced by noise. Hearing Res.26:37–43.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ray, D.E. (1997). Physiological Factors Predisposing to Neurotoxicity. In: Seiler, J.P., Vilanova, E. (eds) Applied Toxicology: Approaches Through Basic Science. Archives of Toxicology, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60682-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60682-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64505-1

  • Online ISBN: 978-3-642-60682-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics