Skip to main content

Promoter Selectivity Control of RNA Polymerase

  • Chapter
Mechanisms of Transcription

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 11))

Abstract

The RNA polymerase (RPase) holoenzyme of Escherichia coli is composed of a core enzyme with the subunit structure α2ββ′, combined with one of the multiple species of σ subunits, which provides the recognition activity for two hexanucleotide sequences of promoters, generally located near -35 and -10 positions relative to the transcription start site. The core enzyme carries all the functions necessary for RNA polymerization but the σ subunit is required for transcription initiation from promoters. Each σ subunit recognizes a different set of promoters and therefore the promoter selectivity of RPase can be modulated by replacement of the σ subunit (Helmann and Chamberlin 1988; Ishihama 1988). At present, seven different molecular species of σ subunit are known to exist in E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angerer A, Enz S, Ochs M, Braun V (1995) Transcription regulation of ferric citrate transport in Escherichia coli K-12. Feci belongs to a new subfamily of σ70-type factors that respond to extraeytoplasmic stimuli. Mol Microbiol 18:163– 174

    Article  PubMed  CAS  Google Scholar 

  • Arnosti DN, Chamberlin MJ (1989) Secondary σ factor controls transcription of flagellar and Chemotaxis genes in Escherichia coli. Proc Natl Acad Sci USA 86:830–834

    Article  PubMed  CAS  Google Scholar 

  • Artsimovitch I, Murakami K, Ishihama A, Howe MM (1996) Transcription activation by the bacteriophage Mu Mor protein requires the C-terminal regions of both α and σ subunits of Escherichia coli RNA polymerase. J Biol Chem 271:32343–32348

    Article  PubMed  CAS  Google Scholar 

  • Attey A, Belyaeva T, Savery N, Hoggett J, Fujita N, Ishihama A, Busby S (1994) Interactions between the cyclic AMP receptor protein and the alpha subunit of RNA polymerase at the Escherichia coli galactose operon P1 promoter. Nucleic Acids Res 22:4375–4380

    Article  PubMed  CAS  Google Scholar 

  • Blatter E Ross W Tang H, Gourse R Ebright R, (1994) Domain organization of RNA polymerase alpha subunit: C-terminal 85 amino acids constitute a domain capable of dimerization and DNA binding. Cell 78:889–896

    Article  PubMed  CAS  Google Scholar 

  • Bokal AJ IV, Ross W, Gaal R, Johnson RC, Gourse RL (1996) Molecular anatomy of a transcription activation patch: FIS-RNA polymerase interactions at the Escherichia coli rrnB promoter. EMBO J (in press)

    Google Scholar 

  • Choy HE, Park SW, Aki T, Parrack P, Fujita N, Ishihama A, Adhya S, (1995) Repression and activation of transcription by Gal and Lac repressors: involvement of alpha subunit of RNA polymerase. EMBO J 14:4523–4530

    PubMed  CAS  Google Scholar 

  • Danes PN, Snyder WB, Cosma CL, Davis LJ, Silhavy TJ, (1995) The Cpx two-component signal transduction pathway of Escherichia coli regulates transcription of the gene specifying the stress-inducible periplasmic protease, DegP. Genes Dev 9:387–398

    Article  Google Scholar 

  • Ding Q, Kusano S, Villarejo M, Ishihama A (1995) Promoter selectivity control of Escherichia coli RNA polymerase by ionic strength: differential recognition of osmoregulated promoters by EσD and EσS holoenzymes. Mol Microbiol 16:649–656

    Article  PubMed  CAS  Google Scholar 

  • Ebright RH, Busby S (1995) The Escherichia coli RNA polymerase a subunit: structure and function. Curr Opin Genet Dev 5:197–203

    Article  PubMed  CAS  Google Scholar 

  • Erickson JW, Gross CA (1989) Identification of the σE subunit of Escherichia coli RNApolymerase: a second alternative σ factor involved in high, temperature gene expression. Genes Dev 3:1462–1471

    Article  PubMed  CAS  Google Scholar 

  • Erickson JW, Vaughn V, Walter WA, Neidhardt FC, Gross CA (1987) Regulation of the promoters and transcripts of rpoH, the Escherichia coli heat shock regulatory gene. Genes Dev 1:419–432

    Article  PubMed  CAS  Google Scholar 

  • Fujita N, Ishihama A (1987) Heat shock induction of RNA polymerase sigma-32 synthesis in Escherichia coli: transcriptional control and a multiple promoter system. Mol Gen Genet 210:10–15

    Article  PubMed  CAS  Google Scholar 

  • Gaal T, Ross W, Blatter EE, Tang H, Jia X, Krishnan VV, Assa-Muut N, Ebright RH, Gourse R (1996) DNA binding determinants of the alpha subunit of RNA polymerase: a novel DNA binding domain architecture. Gense Dev 10:16–26

    Article  CAS  Google Scholar 

  • Garcia E, Bancroft S, Rhee SG, Kustu S, (1977) The product of a newly identified gene, glnF, is required for synthesis of glutamine synthetase in Salmonella. Proc Natl Acad Sci USA 74:1662–1666

    Article  PubMed  CAS  Google Scholar 

  • Gardella T, Moyle H, Susskind MM, (1989) A mutant Escherichia coli sigma subunit of RNA polymerase with altered promoter specificity. J Mol Biol 206:579–590

    Article  PubMed  CAS  Google Scholar 

  • Giladi H, Igarashi K, Ishihama A, Oppenheim AB (1992) Stimulation of the phale λpL promoter requires the carboxy terminus of the α subunit of RNA polymerase. J Mol Biol 227:985–990

    Article  PubMed  CAS  Google Scholar 

  • Giladi H, Murakami K, Ishihama A, Oppenheim AB (1996) Identification of an UP element within the IHF binding site at the PL1-PL2 tandem promoter of bacteriophage λ. J Mol Biol 260:484–491

    Article  PubMed  CAS  Google Scholar 

  • Gillen KL, Hughes KT (1991) Molecular characterization of flgM, a gene encoding a negative regulator of flagellin synthesis in Salmonella typhimurium. J Bacteriol 173:6453–6459

    PubMed  CAS  Google Scholar 

  • Grossman AD, Erickson JW, Gross CA (1984) The htpR gene of E. coli is a sigma factor for heat shock promoters. Cell 38:383–390

    Article  PubMed  CAS  Google Scholar 

  • Helmann JD, (1991) Alternative sigma factors and the regulation of flagellar gene expression. Mol Microbiol 5:2875–2882

    Article  PubMed  CAS  Google Scholar 

  • Helmann JD, Chamberlin MJ (1988) Structure and function of bacterial sigma factors. Annu Rev Biochem 57:839–872

    Article  PubMed  CAS  Google Scholar 

  • Hengge-Aronis R (1993) Survival of hunger and stress: the role of rpoS in stationary phase gene regulation in Escherichia coli. Cell 72:165–168

    Article  PubMed  CAS  Google Scholar 

  • Hu JC, Gross CA (1995) Mutations in the sigma subunit of E. coli RNA polymerase which affect positive control of transcription. Mol Gen Genet 199:7–13

    Article  Google Scholar 

  • Hughes KT, Gillen KL, Semon MJ, Karlinsey JE (1993) Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science 262:1277–1280

    Article  PubMed  CAS  Google Scholar 

  • Huisman GW, Kolter R (1994) Sensing starvation: a homoserine lactone-dependent signaling pathway in Escherichia coli. Science 265:537–539

    Article  PubMed  CAS  Google Scholar 

  • Igarashi K, Ishihama A (1991) Bipartite functional map of the E. coli RNA polymerase a subunit: involvement of the C-terminal region in transcription activation by cAMP-CRP. Cell 32:319–325

    Google Scholar 

  • Igarashi K, Fujita N, Ishihama A (1991a) Identification of a subunit assembly domain in the α subunit of Escherichia coli RNA polymerase. J Mol Biol 218:1–6

    Article  PubMed  CAS  Google Scholar 

  • Igarashi K, Hanamura A, Makino K, Aiba H, Aiba H, Mizuno T, Nakata A, Ishihama A (1991b) Bipartite functional organization of the α subunit of Escherichia coli RNA polymerase: two modes of transcription activation by positive factors. Proc Natl Acad Sci USA 88:8958–8962

    Article  PubMed  CAS  Google Scholar 

  • Ishihama A (1988) Promoter selectivity of prokaryotic RNA polymerases. Trends Genet 4:282–286

    Article  PubMed  CAS  Google Scholar 

  • Ishihama A (1991) Global control of gene expression in bacteria. In Ishihama A, Yoshikawa H (eds) Control of cell growth and division. Springer, Berlin Heidelberg New York, pp 121–140

    Google Scholar 

  • Ishihama A, (1992) Role of the RNA polymerase α subunit in transcription activation. Mol Microbiol 6:3283–3288

    Article  PubMed  CAS  Google Scholar 

  • Ishihama A, (1993) Protein-protein communication within the transcription apparatus. J Bacteriol 175:2483–2489

    PubMed  CAS  Google Scholar 

  • Jafri S, Urbanowski ML, Stauffer GV (1995) A mutation in the rpoA gene encoding the α subunit of RNA polymerase that affects metE-metR transcription in Escherichia coli. J Bacteriol 177:524–529

    PubMed  CAS  Google Scholar 

  • Jair K-W, Fawcett WP, Fujita N, Ishihama A, Wolf RE Jr (1995a) Ambidextrous transcriptional activation by SoxS: requirement for the C-terminal domain of the RNA polymerase alpha subunit in a subset of Escherichia coli superoxide-inducible genes. Mol Microbiol 19:307–317

    Article  Google Scholar 

  • Jair K-W, Martin RG, Rosner JL, Fujita N, Ishihama A, Wolf RE, Jr, (1995b) Purification and regulatory properties of MarA protein, a transcriptional activator of Escherichia coli multiple antibiotic and superoxide resistance promoters. J Bacteriol 177:7100–7104

    PubMed  CAS  Google Scholar 

  • Jair K-W, Yu X, Skarstad K, Thony B, Fujita N, Ishihama A, Wolf RE, Jr, (1996) Transcriptional activation of promoters of the superoxide and multiple antibiotic resistance regulons by Rob, a binding protein of the Escherichia coli origin of chromosomal replication. J Bacteriol 178:2507–2513

    PubMed  CAS  Google Scholar 

  • Jeon YH, Negishi T, Shirakawa M, Yamazaki T, Fujita N, Ishihama A, Kyogoku Y (1995) Solution structure of the activator contact domain of the RNA polymerase α subunit. Science 270:1495–1497

    Article  PubMed  CAS  Google Scholar 

  • Jishage M, Ishihama A (1995) Regulation of RNA polymerase sigma subunit synthesis in Escherichia coli: intracellular levels of σ70 and σ38. J Bacteriol 177:6832–6835

    PubMed  CAS  Google Scholar 

  • Jishage M, Ishihama A (1997) Variation in RNA polymerase sigma subunit composition within different stocks of Escherichia coli strain W3350. J Bacteriol 179:959–963

    PubMed  CAS  Google Scholar 

  • Jishage M, Iwata A, Ueda S, Ishihama A (1996) Regulation of RNA polymerase sigma subunit synthesis in Escherichia coli: intracellular concentrations of four species of sigma subunit under various growth conditions. J Bacteriol 178:5447–5451

    PubMed  CAS  Google Scholar 

  • Kimura M, Ishihama A (1995a) Functional map of the alpha subunit of Escherichia coli RNA polymerase: insertion analysis of the amino-terminal assembly domain. J Mol Biol 248:756–767

    Article  PubMed  CAS  Google Scholar 

  • Kimura M, Ishihama A (1995b) Functional map of the alpha subunit of Escherichia coli RNA polymerase: amino acid substitution within the amino-terminal assembly domain. J Mol Biol 254:342–349

    Article  PubMed  CAS  Google Scholar 

  • Kimura M, Ishihama A, (1996) Subunit assembly in vivo of Escherichia coli RNA polymerase: role of the amino-terminal assembly domain of alpha subunit. Genes Cells 1:517–528

    Article  PubMed  CAS  Google Scholar 

  • Kimura M, Fujita N, Ishihama A (1994) Functional map of the alpha subunit of Escherichia coli RNA polymerase: deletion analysis of the amion-terminal assembly domain. J Mol Biol 242:107–115

    Article  PubMed  CAS  Google Scholar 

  • Kolb A, Kotlarz D, Kusano S, Ishihama A (1995) Selectivity of the Escherichia coli RNA polymerase Eσr38 for overlapping promoters and ability to support CRP activation. Nucleic Acids Res 23:819–826

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Grimes B, Fujita N, Makino K, Malloch RA, Hay ward RS, Ishihama A, (1994) Role of the sigma 70 subunit of Escherichia coli RNA polymerase in transcription activation. J Mol Biol 235:405–413

    Article  PubMed  CAS  Google Scholar 

  • Kusano S, Ishihama A, (1997) Stimulatory effect of trehalose on the formation and activity of Escherichia coli Eσ738 holoenzyme. J Bacteriol 179, in press.

    Google Scholar 

  • Kusano S, Ding Q, Fujita N, Ishihama A, (1996) Promoter selectivity of Escherichia coli Eσ70and Eσ38 holoenzymes: Effect of DNA supercoiling. J Biol Chem 271:1998–2004

    Article  PubMed  CAS  Google Scholar 

  • Landini P, Volkert MR (1995) RNA polymerase α subunit binding site in positively controlled promoters: a new model for RNA polymerase-promoter interaction and transcription activation, in the Escherichia coli ada and aidB genes. EMBO J 14:4329–4335

    PubMed  CAS  Google Scholar 

  • Lange R, Hengge-Aronis R (1994) The cellular concentration of the σS subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. Genes Dev 8:1600–1612

    Article  PubMed  CAS  Google Scholar 

  • Lawley B, Fujita N, Ishihama A, Pittard AJ (1995) The TyrR protein of Escherichia coli is a class I transcription activator. J Bacteriol 177:238–241

    PubMed  CAS  Google Scholar 

  • Lee J, Goldfarb A (1991) lac repressor acts by modifying the intial transcribing complex so that it cannot leave the promoter. Cell 66:793–798

    Article  PubMed  CAS  Google Scholar 

  • Li M, Moyle H, Susskind MM (1994) Target of the transcription activation function of phage λ cI protein. Science 263:75–77

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Hanna MM, (1995) NusA interferes with interactions between the nascent RNA and the C-terminal domain of the alpha subunit of RNA polymerase in Escherichia coli transcription complexes. Proc Natl Acad Sci USA 92:5012–5016

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Zhang Y, Severinov K, Das A, Hanna MM (1996) Role of Escherichia coli RNA polymerase alpha subunit in modulation of pausing, termination and anti-termination by the transcription elongation factor NusA. EMBO J 15:150–161

    PubMed  Google Scholar 

  • Liu X, Fujita N, Ishihama A, Matsumura P (1995) The C-terminal region of the alpha subunit of Escherichia coli RNA polymerase is required for transcriptional activation of the flagellar level II operons by the FlhD/FlhC complex. J Bacteriol 177:5186–5188

    PubMed  CAS  Google Scholar 

  • Loewen PC, Hengge-Aronis R (1994) The role of the sigma factor σS (katF) in bacterial global regulation. Annu Rev Microbiol 48:53–80

    Article  PubMed  CAS  Google Scholar 

  • Lonetto M, Gribskov M, Gross CA (1992) The sigma 70 family: sequence conservation and evolutionary relationships. J Bacteriol 174:3843–3849

    PubMed  CAS  Google Scholar 

  • Macnab RM, (1992) Genetics and biogenesis of bacterial flagella. Annu Rev Genet 26:131–158

    Article  PubMed  CAS  Google Scholar 

  • Magasanik B (1982) Genetic control of nitrogen assimilation in bacteria. Annu Rev Genet 16:135–168

    Article  PubMed  CAS  Google Scholar 

  • Makino K, Amemura M, Kim S-K, Nakata A, Shinagawa H (1993) Role of the σ70 subunit of RNA polymerase in transcription activation by activator protein PhoB in Escherichia coli. Genes Dev 7:149–160

    Article  PubMed  CAS  Google Scholar 

  • Merrick M (1993) In a class its own: the RNA polymerase sigma factor σ54N). Mol Microbiol 10:903–909

    Article  PubMed  CAS  Google Scholar 

  • Muffler A, Fischer D, Hengge-Aronis R (1996a) The RNA-binding protein HF-I, known as a host factor for phage Qβ RNA replication, is essential for rpoS translation in Escherichia coli. Genes Dev 10:1143—1151

    Google Scholar 

  • Muffler A, Tauisen DD, Lange R, Hengge Aronis R, (1996b) Post-transcriptional osmotic regulation of the σS subunit of RNA polymerase in Escherichia coli. J Bacteriol 178:1607–1613

    PubMed  CAS  Google Scholar 

  • Murakami K, Fujita N, Ishihama A, (1996) Transcription factor recognition surface on the RNA polymerase α subunit is involved in contact with the DNA enhancer element. EMBO J 15:4358–4367

    PubMed  CAS  Google Scholar 

  • Murakami K, Kimura M, Owens JT, Meares CL, Ishihama T (1997) The two alpha subunits of Escherichia coli RNA polymerase are asymmetrically arranged and contact different halves of the DNA UP element. Proc Natl Acad Sci USA 94:1709–1714

    Article  PubMed  CAS  Google Scholar 

  • Negishi T, Fujita N, Ishihama A (1995) Structural map of the alpha subunit of Escherichia coli RNA polymerase: structural domains identified by proteolytic cleavage. J Mol Biol 248:723–728

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi K, Kutsukake K, Suzuki H, lino T, (1992) A novel transcriptional regulation mechanism in the flagellar regulon of Salmonella typhimuriunr. an antisigma factor inhibits the activity of flagellum specific factor, sigma F. Mol Microbiol 6:3149–3157

    CAS  Google Scholar 

  • Ouhammouch M, Orsini G, Brody EN, (1994) The asiA gene product of bacteriophage T4 is required for middle mode RNA synthesis. J Bacteriol 176:3956–3965

    PubMed  CAS  Google Scholar 

  • Ozaki M, Wada A, Fujita N, Ishihama A (1991) Growth phase-dependent modification of RNA polymerase in Escherichia coli. Mol Gen Genet 230:17–23

    Article  PubMed  CAS  Google Scholar 

  • Ozaki M, Fujita N, Wada A, Ishihama A (1992) Promoter selectivity of the stationary-phase forms of Escherichia coli RNA polymerase and conversion in vitro of the S1 form enzyme into a log-phase enzyme-like form. Nucleic Acids Res 20:257–261

    Article  PubMed  CAS  Google Scholar 

  • Raina S, Missiakas D, Georgopoulos C (1995) The rpoE gene encoding the sigma E (sigma 24) heat shock sigma factor of Escherichia coli. EMBO J 14:1043–1055

    PubMed  CAS  Google Scholar 

  • Rao NN, Kornberg A (1996) Inorganic polyphosphate supports resistance and survival of stationary-phase Escherichia coli. J Bacteriol 178:1394–1400

    PubMed  CAS  Google Scholar 

  • Rao L, Ross W, Appleman JA, Gaal T, Leirmo S, Schlax PJ, Record MT, Gourse RL, (1994) Factor independent activation of rrnB P1. An extended promoter with an upstream element that dramatically increases promoter strength. J Mol Biol 235:1421–1435

    Article  PubMed  CAS  Google Scholar 

  • Ross W, Gosink KK, Salomon J, Igarashi K, Zou C, Ishihama A, Severinov K, Gourse R (1993) A third recognition element in bacterial promoters: DNA binding by the α subunit of RNA polymerase. Science 262:1307–1413

    Article  Google Scholar 

  • Roszak DB, Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiol Rev 51:365–379

    PubMed  CAS  Google Scholar 

  • Siegele DA, Kolter R, (1992) Life after log. J Bacteriol 174:345–348

    PubMed  CAS  Google Scholar 

  • Straney SB, Crothers DM (1987) Lac repressor is a transient gene-activating protein. Cell 51:699–707

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Takayanagi Y, Fujita N, Ishihama A, Takahashi H (1993) Heterogeneity of the principal a factor in Escherichia coli:, the rpoS gene product, σ38, is a second principal a factor of RNA polymerase in stationary-phase Escherichia coli. Proc Natl Acad Sci USA 90:3511–3515

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Kusano S, Fujita N, Ishihama A, Takahashi H, (1995) Promoter determinants for Escherichia coli RNA polymerase holoenzyme containing σ38 (the rpoS gene product). Nucleic Acids Res 23:827–834

    Article  PubMed  CAS  Google Scholar 

  • Tang H, Severinov K, Goldfarb A, Fenyo D, Chait B, Ebright R, (1994) Location, structure, and function of the target of a transcriptional activator protein. Genes Dev 8:3058–3067

    Article  PubMed  CAS  Google Scholar 

  • Tang Y, Murakami K, Ishihama A, deHaseth PL, (1996) Upstream interactions at the lambda PRM promoter are sequence-nonspecific and activate the promoter to a lesser extent than an introduced UP element of a ribosomal RNA promoter. J Bacteriol 178:6945–6951

    PubMed  CAS  Google Scholar 

  • Tao K, Fujita N, Ishihama A, (1993) Involvement of the RNA polymerase α subunit C-terminal region in co-operative interaction and transcriptional activation with OxyR protein. Mol Microbiol 7:859–864

    Article  PubMed  CAS  Google Scholar 

  • Tao K, Zou C, Fujita N, Ishihama A (1995) Mapping of the OxyR protein contact site in the C-terminal region of RNA polymerase α subunit. J Bacteriol 177:6740–6744

    PubMed  CAS  Google Scholar 

  • Travers A (1987) Structure and function of Escherichia coli promoters. CRC Crit Rev Biochem 22:181–219

    Article  PubMed  CAS  Google Scholar 

  • VanBogelen RA, Abshire KZ, Pertsemilidis A, Clark RL, Neidhardt FC (1996) Geneprotein database of Escherichia coli, 6th edn. In: Neidhardt FC (ed) Escherichia coli and Salmonella, 2nd edn. American Society for Microbiology, Washington, pp 2067–2217

    Google Scholar 

  • Wang QP, Kaguni JM (1989) A novel sigma factor is involved in expression of the rpoH gene of Escherichia coli. J Bacteriol 171:4248–4253

    PubMed  CAS  Google Scholar 

  • Yamagishi M, Matsushima H, Wada A, Sakagami M, Fujita N, Ishihama A (1993) Regulation of the Escherichia coli rmf gene encoding ribosome modulation factor (RMF): growth phase- and growth rate-dependent control. EMBO J 12:625–630

    PubMed  CAS  Google Scholar 

  • Yamashino T, Ueguchi C, Mizuno T (1995) Quantitative control of the stationary phase-specific sigma factor, σS, in Escherichia coli: involvement of the nucleoid protein H-NS. EMBO J 14:594–602

    PubMed  CAS  Google Scholar 

  • Yura T, Nagai H, Mori H, (1993) Regulation of the heat-shock response in bacteria. Annu Rev Microbiol 47:321–350

    Article  PubMed  CAS  Google Scholar 

  • Zou C, Fujita N, Ishihama A, (1992) Mapping the cAMP receptor protein contact site on the α subunit of Escherichia coli RNA polymerase. J Mol Biol 236:1283–1288

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ishihama, A. (1997). Promoter Selectivity Control of RNA Polymerase. In: Eckstein, F., Lilley, D.M.J. (eds) Mechanisms of Transcription. Nucleic Acids and Molecular Biology, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60691-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60691-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64509-9

  • Online ISBN: 978-3-642-60691-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics