Skip to main content

Phosphate Minerals in Meteorites and Lunar Rocks

  • Chapter
Phosphate Minerals

Abstract

Phosphorus is in meteorites and lunar rocks a minor, but in many respects important element. It occurs chemically bound as phosphates and phosphides, and it occurs in solid solution in the iron-nickel alloys kamacite and taenite. Broadly speaking, the phosphates are characteristic of the stone meteorites and of the inclusion-rich parts of the iron meteorites, while the phosphides, i.e., schreibersite and rhabdite, (Fe, Ni)3P, are mainly present in iron meteorites. In pallasites, phosphates, and phosphides occur together in significant amounts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adib D, Liou JG (1979) The Naragh meteorite: A new olivine bronzite chondrite fall. Meteoritics 14:257–272

    Google Scholar 

  • Agrell SO, Axon HJ, Goldstein JI (1976) A metallographic and petrological study of metal-silicate fragments in the > 1 mm size range from lunar soil 14162,80. Miner Mag 40:565–577

    Article  Google Scholar 

  • Al-Bassam KS (1978) The mineralogy and chemistry of the Alta’ameen meteorite. Meteoritics 13:257–265

    Article  Google Scholar 

  • Albee AL, Gancarz AJ, Chodos A A (1973) Metamorphism of Apollo 16 and 17 and Luna-20 metaclas-tic rocks at about 3.95 AE. Proc Fourth Lunar Sci Conf, p 569–595

    Google Scholar 

  • Bild RW (1974) New occurrences of phosphates in iron meteorites. Contrib. Miner Petrol 45:91–98

    Article  Google Scholar 

  • Bild RW (1977) Compositions of silicate inclusions as an aid in the classification of iron meteorites. Meteoritics 12:177

    Google Scholar 

  • Buchwald VF (1966) The iron-nickel-phosphorus system and the structure of iron meteorites. Acta Polytech Scan 51:1–46

    Google Scholar 

  • Buchwald VF (1971) Tritium loss resulting from cosmic annealing, compared with the microstructure and microhardness of six iron meteorites. Chem Erde 30:33–57

    Google Scholar 

  • Buchwald VF (1975) Handbook of iron meteorites. Their history, distribution, composition, and structure. Univ California Press, Berkeley, vol 1–3

    Google Scholar 

  • Buchwald VF (1977) The mineralogy of iron meteorites. Philos Trans R Soc Lond Math Phys Sci A286:453–491

    Article  Google Scholar 

  • Bull RK, Durrani SA (1980) Fission-track retention age of the Bondoc mesosiderite. Earth Planet Sci Let 49:181–187

    Article  Google Scholar 

  • Bunch TE, Keil K, Olsen E (1970) Mineralogy and petrology of silicate inclusions in iron meteorites. Contrib Miner Petrol 25:297–340

    Article  Google Scholar 

  • Bunch TE, Keil K, Huss GI (1972) The Landes meteorite. Meteoritics 7:31–38

    Article  Google Scholar 

  • Buseck PR, Holdsworth E (1977) Phosphate minerals in pallasite meteorites. Miner Mag 41:91–102

    Article  Google Scholar 

  • Calvo C, Gopal R (1975) The crystal structure of whitlockite from the Palermo quarry. Am Miner 60:120–133

    Google Scholar 

  • Clarke RS Jr, Jarosewich E, Mason B, Nelen J, Gomez M, Hyde JR (1970) The Allende, Mexico, meteorite shower. Smithson Contrib Earth Sci 5:1–53

    Google Scholar 

  • Davis AM (1977) The cosmochemical history of the pallasites. Diss NGR-07–004-166, Yale University.

    Google Scholar 

  • Dowty E, Prinz M, Keil K (1973) Composition, mineralogy, and petrology of 28 mare basalts from Apollo 15 rake samples. Proc Fourth Lunar Sci Conf, p 423–444

    Google Scholar 

  • Dowty E, Keil K, Prinz M (1974) Igneous rocks from Apollo 16 rake samples. Proc Fifth Lunar Sci Conf, p 431–445

    Google Scholar 

  • DuFresne ER, Roy SK (1961) A new phosphate mineral from the Springwater pallasite. Geochim Cos- mochim Acta 24:198–205

    Article  Google Scholar 

  • Esbensen K, Buchwald VF (1979) A database for iron meteorite data. Statistical analysis of the global iron meteorite population. Meteoritics 14:573–576

    Google Scholar 

  • French BM, Walter LS, Heinrich KJF (1970) Quantitative mineralogy of an Apollo 11 lunar sample. Proc First Lunar Sci Conf, p 433–444

    Google Scholar 

  • Friel J J, Goldstein JI (1977) The relationship between lunar metal particles and phosphate minerals. Proc Eight Lunar Sci Conf, p 3955–3965

    Google Scholar 

  • Frondel C (1941) Whitlockite, a new calcium phosphate, Ca3(P04)2. Am Miner 26:145–152

    Google Scholar 

  • Frondel JW (1975) Lunar mineralogy. Wiley & Sons, New York

    Google Scholar 

  • Fuchs LH (1962) Occurrence of whitlockite in chondritic meteorites. Science 137:425–426

    Article  Google Scholar 

  • Fuchs LH (1967) Stanfieldite, a new phosphate mineral from stony-iron meteorites. Science 158:910–911

    Article  Google Scholar 

  • Fuchs LH (1969) The phosphate mineralogy of meteorites. In: Millman PM (ed) Meteorite research. Reidel, Dordrecht, Holland, p 683–695

    Chapter  Google Scholar 

  • Fuchs LH, Olsen E (1965) The occurrence of chlorapatite in the Mount Stirling octahedrite. Trans Am GeophysUn 46:122

    Google Scholar 

  • Fuchs LH, Olsen E, Henderson EP (1967) On the occurrence of brianite and panethite, two new phosphate minerals from the Dayton meteorite. Geochim Cosmochim Acta 31:1711–1719

    Article  Google Scholar 

  • Fuchs LH, Olsen E, Gebert E (1973a) New X-ray and compositional data for farringtonite. Mg3(P04)2. Am Miner 58:949–951

    Google Scholar 

  • Fuchs LH, Olsen E, Jensen KJ (1973b) Mineralogy, mineral-chemistry, and composition of the Murch-ison (C2) meteorite. Smithson Contrib Earth Sci 10:1–39

    Article  Google Scholar 

  • Graham AL, Easton A J, Hutchison R, Jérôme DY (1976) The Bovedy meteorite, mineral chemistry and origin of its Ca-rich glass inclusions. Geochim Cosmochim Acta 40:529–535

    Article  Google Scholar 

  • Hutchison R, Bevan AWR, Easton A J, Agrell SO (1981) Mineral chemistry and genetic relations among H-group chondrites. Proc R Soc Lond A374:159–178

    Google Scholar 

  • Jovanovic S, Reed GW Jr (1980) Cl, P205, U, and Br associated with mineral separates from a low and a high Ti mare basalt. Proc Eleventh Lunar Planet Sci Conf, p 125–134

    Google Scholar 

  • Keil K, Bunch TE, Prinz M (1970) Mineralogy and composition of Apollo 11 Lunar samples. Proc First Lunar Sci Conf, p 561–598

    Google Scholar 

  • Keil K, Prinz M, Bunch TE (1971) Mineralogy, petrology, and chemistry of some Apollo 12 samples. Proc Sec Lunar Sci Conf, p 319–341

    Google Scholar 

  • King EA (1976) Space geology. An introduction. Wiley & Sons, New York

    Google Scholar 

  • Kirova OA, Dyakonova MI, Charitonova WJ, Levskij LK (1977) A study of the chondrite Gorlovka. Meteoritika 36:46–52 (in russian)

    Google Scholar 

  • Kracher A, Kurat G, Buchwald VF (1977) Cape York: The extraordinary mineralogy of an ordinary iron meteorite and its implication for the genesis of III AB irons. Geochem J 11:207–217

    Article  Google Scholar 

  • Malissa H (1974) Electron microprobe analysis of some minor and accessory components in me-sosiderites. Tschermaks Miner Petrol Mitt 21:233–245

    Article  Google Scholar 

  • Marshall RR, Keil K (1965) Polymineralic inclusions in the Odessa iron meteorite. Icarus 4:461–179

    Article  Google Scholar 

  • Marvin UB, Klein C (1964) Meteoritic zircon. Science 158:910

    Google Scholar 

  • Mason B (1962) Meteorites. Wiley & Sons, New York

    Google Scholar 

  • Mason B, Graham AL (1970) Minor and trace elements in meteoritic minerals. Smithson Contrib Earth Sci 3:1–17

    Article  Google Scholar 

  • Mason B, Melson WG (1970) The lunar rocks. Wiley Intersci, New York

    Google Scholar 

  • Mason B, Jarosewich E (1973) The Barea, Dyarll Island, and Emery meteorites, and a review of me-sosiderites. Min Mag 39:204–215

    Article  Google Scholar 

  • Mason B, Wiik HB (1964) The amphoterites and meteorites of similar composition. Geochim Cosmochim Acta 28:533–538

    Article  Google Scholar 

  • McCallum IS, Mathez EA (1975) Petrology of noritic cumulates and a partial melting model for the genesis of Fra Mauro basalts. Proc Sixth Lunar Sci Conf, p 395–14

    Google Scholar 

  • McKay DS, Clanton US, Morrison DA, Ladle GH (1972) Vapor phase crystallization in Apollo 14 breccias. Proc Third Lunar Sci Conf, p 739–752

    Google Scholar 

  • Meyer C, Brett R, Hubbard NJ et al. (1971) Mineralogy, chemistry, and origin of the KREEP component in soil samples from the Ocean of Storms. Proc Sec Lunar Sci Conf, p 393–411

    Google Scholar 

  • Michaelis H von, Willis JP, Erlank AJ, Ahrens LH (1969) The composition of stony meteorites. I. Analytical techniques. Earth Plan Sci Let 5:383–386

    Article  Google Scholar 

  • Moss AA, Hey MH, Elliott CJ, Easton AJ (1967) Methods for the chemical analysis of meteorites. Miner Mag 36:101–119

    Article  Google Scholar 

  • Olsen E, Fredriksson K (1966) Phosphates in iron and pallasite meteorites. Geochim Cosmochim Acta 30:459–70

    Article  Google Scholar 

  • Olsen E, Fuchs LH (1967) The state of oxidation of some iron meteorites. Icarus 6:242–253

    Article  Google Scholar 

  • Olsen E, Erlichman J, Bunch TE, Moore PB (1977) Buchwaldite, a new meteorite phosphate mineral. Am Miner 62:362–364

    Google Scholar 

  • Pellas P (1981) Early thermal histories of L chondrites. Abstract, Twelfth Lunar Planet Sci Conf, March 1981, Houston, p 825–827

    Google Scholar 

  • Pellas P, Storzer D (1981) 244Pu fission track thermometry and its application to stony meteorites. Proc R Soc Lond A374:253–270

    Google Scholar 

  • Powell BN (1971) Petrology and chemistry of mesosiderites II. Geochim Cosmochim Acta 35:5–34

    Article  Google Scholar 

  • Prewitt CT, Rothbard DR (1975) Crystal structures of meteoritic and lunar whitlockites. Abstr Lunar Sci VI 2:646–648

    Google Scholar 

  • Prinz M, Nehru CE, Delaney JS, Harlow GE, Bedell RL (1980) Modal studies of mesosiderites and related achondrites, including the new mesosiderite ALHA 77219. Proc Eleventh Lunar Planet Sci Conf, p 1055–1071

    Google Scholar 

  • Romig AD, Goldstein JI (1980) Determination of the Fe-Ni and Fe-Ni-P phase diagrams at low temperatures (700 to 300 °C). Metall Transact Al 1:1151–1159

    Article  Google Scholar 

  • Sears DW (1978) The nature and origin of meteorites. Hilger Bristol.

    Google Scholar 

  • Shannon EV, Larsen ES (1925) Merrillite and chlorapatite from stony meteorites. Am J Sci 9:250

    Article  Google Scholar 

  • Simonds CH, Warner JL, Phinney WC (1973) Petrology of Apollo 16 poikilitic rocks. Proc Fourth Lunar Sci Conf, p 613–632

    Google Scholar 

  • Smith DGW, Folinsbee RE, Hall-Beyer M (1973) A note on the mineralogy and classification of the Vilna meteorite. Meteoritics 8:197–199

    Article  Google Scholar 

  • Smith JV, Hervig RL (1979) Shergotty meteorite: Mineralogy, petrography and minor elements. Meteoritics 14:121–142

    Google Scholar 

  • Steele IM, Smith JV (1976) Mineralogy of the Ibitira eucrite and comparison with other eucrites and lunar samples. Earth Planet Sci Let 33:67–78

    Article  Google Scholar 

  • Strunz H (1970) Mineralogische Tabellen. Akademische Verlagsgesellschaft, Leipzig

    Google Scholar 

  • Tarasov LS, Nasarov MA, Shevaleevsky ID, Marakov ES, Ivanov VI (1973) Mineralogy of anorthosi- tic rocks from the region of the crater Apollonius C (Luna-20). Proc Fourth Lunar Sci Conf, p333–349

    Google Scholar 

  • Taylor LA, Burton JC (1976) Experiments on the stability of FeOOH on the surface of the Moon. Meteoritics 11:225–230

    Article  Google Scholar 

  • Taylor LA, Misra KC, Walker BM (1976) Subsolidus reequilibration, grain growth, and compositional changes of native FeNi metal in lunar rocks. Proc Seventh Lunar Sci Conf, p 837–856

    Google Scholar 

  • Taylor SR (1975) Lunar science: A post - Apollo view. Pergamon, New York

    Google Scholar 

  • Van Schmus WR, Ribbe PH (1969) Composition of phosphate minerals in ordinary chondrites. Geochim Cosmochim Acta 33:637–640

    Article  Google Scholar 

  • Wasson JT (1974) Meteorites. Classification and properties. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Wiik HB (1956) The chemical composition of some stony meteorites. Geochim Cosmochim Acta 9:279–289

    Article  Google Scholar 

  • Yagi K, Lovering JF, Shima M, Okada A (1978) Petrology of the Yamato meteorites (j), (k), (1), and (m) from Antarctica. Meteoritics 13:23–45

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Buchwald, V.F. (1984). Phosphate Minerals in Meteorites and Lunar Rocks. In: Nriagu, J.O., Moore, P.B. (eds) Phosphate Minerals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61736-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61736-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-61738-6

  • Online ISBN: 978-3-642-61736-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics