Skip to main content

Morphology and Biochemistry of Diploid and Androgenetic Haploid (Merogonic) Hybrids

  • Chapter
The Sea Urchin Embryo

Abstract

Sea urchin hybrids have often been used to study nucleo-cytoplasmic interaction during embryonic development. In diploid hybrids the sperm nucleus of one species is introduced into the egg of another species, while in haploid merogonic hybrids anucleate egg fragments are crossfertilized. In the former the egg contains 2 pronuclei of different species, and in the latter a male pronucleus is enclosed by foreign cytoplasm without a second haploid nucleus. Both combinations often result in disharmonic interaction between nucleus and cytoplasm, leading sooner or later to developmental arrest and death of the embryo. It is evident that analysis of the cytologic behavior and morphogenetic patterns of these hybrids provide us with valuable information about the basic mechanism of embryonic development.

Prof. F. Baltzer died on March 18, 1974, shortly after his 90th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • BADMAN, W.W., BROOKBANK, J.W., 1970. Serological studies of 2 hybrid sea urchins. Develop. Biol. 21, 243–256.

    PubMed  CAS  Google Scholar 

  • BALTZER, F., 1909. Die Chromosomen von Strongylocentrotus lividus and Echinus microtuberculatus. Arch. Zellforsch. 2, 549–632.

    Google Scholar 

  • BALTZER, F., 1910. Über die Beziehung zwischen Chromatin und der Entwicklung und Vererbungsrichtung bei Echinodermusbastarden. Arch. Zellforsch. 5, 497–621.

    Google Scholar 

  • BALTZER, F., BERNHARD, M., 1955. Weitere Beobachtungen über Letalität und Vererbungsrichtung beim Seeigelbastard Paracentrotus ♀ x Arbacia ♂. Exp. Cell Res. Suppl. 3, 16–26.

    Google Scholar 

  • BALTZER, F., CHEN, P.S., 1960. Über das zytologische Verhalten und die Synthese der Nukleinsäuren bei den Seeigelbastarden Paracentrotus ♀ x Arbacia ♂ und Paracentrotus ♀ x Sphaerechinus♂. Rev. Suisse Zool. 67, 183–194.

    CAS  Google Scholar 

  • BALTZER, F., CHEN, P.S., 1965. A study of DNA synthesis in sea urchin hybrids by the incorporation of H3-thymidine. Experientia 21, 194–196.

    PubMed  CAS  Google Scholar 

  • BALTZER, F., CHEN, P.S., TARDENT, P., 1961. Embryonalentwicklung, DNS-Synthese und Respiration des Bastards Arbacia ♀ x Paracentrotus, mit Vergleichen zu anderen Seeigelbastarden. Arch. Julius Klaus-Stift. Vererbungsforsch. Sozialanthropol. Rassenhyg. 36, 126–135.

    CAS  Google Scholar 

  • BALTZER, F., CHEN, P.S., WHITELEY, A.H., 1958. Biochemical studies on sea urchin hybrids. Exp. Cell Res. Suppl. 6, 192–209.

    Google Scholar 

  • BALTZER, F., HARDING, C., LEHMAN, H.E., BOPP, P., 1954. Über die Entwicklungshemmungen der Seeigelbastarde Paracentrotus ♀ x Arbacia und Psammechinus ♀ x Arbacia . Rev. Suisse Zool. 61, 402–416.

    Google Scholar 

  • BALTZER, F., TARDENT, P., CHEN, P.S., 1967. About the DNA-synthesis during the early development of Paracentrotus lividus, Arbacia lixula and their hybrids. Experientia 23, 777–779.

    PubMed  CAS  Google Scholar 

  • BARRETT, D., ANGELLO, G.M., 1969. Maternal characteristics of hatching enzymes in hybrid sea urchin embryos. Exp. Cell Res. 57, 159–166.

    PubMed  CAS  Google Scholar 

  • BERG, W.E., 1950. Free amino acids in sea urchin eggs and embryos. Proc. Soc. exp. Biol, and Med. 75, 30–32.

    CAS  Google Scholar 

  • BERG, W.E., 1965. Rates of protein synthesis in whole and half embryos of the sea urchin. Exp. Cell Res. 40, 469–489.

    PubMed  CAS  Google Scholar 

  • BERNHARD, M., 1957. Die Kultur von Seeigellarven (Arbacia lixula L.) in künstlichem und natürlichen Meerwasser mit Hilfe von Ionenaus-tauschsubstanzen und Komplexbildern. Pubbl. Sta. Zool. Napoli 29, 80.

    CAS  Google Scholar 

  • BOELL, E.J., 1955. Energy exchange and enzyme development during embryogenesis. In: Analysis of Development (B.H. Willier, P.A. Weiss und V. Hamburger, eds), pp. 520–555. Philadelphia and London: Saunders.

    Google Scholar 

  • BOHUS-JENSEN, A.A., 1953. The effect of trypsin on the cross fertility of sea urchin eggs. Exp. Cell Res. 5, 325–328.

    Google Scholar 

  • BOREI, H., 1948. Respiration of oocytes, unfertilized eggs and fertilized eggs from Psammechinus and Asterias. Biol. Bull. 95, 124–150.

    PubMed  CAS  Google Scholar 

  • BOVERI, TH., 1889. Ein geschlechtlich erzeugter Organismus ohne mütterliche Eigenschaften. Sitzber. Ges. Morph. Physiol. München 5, 73–80.

    Google Scholar 

  • BOVERI, TH., 1895. Über die Befruchtungs- und Entwicklungsfähigkeit kernloser Seeigeleier und über die Möglichkeit ihrer Bastardierung. Wilhelm Roux’ Arch. Entwicklungsmech. Organismen 2, 394–443.

    Google Scholar 

  • BOVERI, TH., 1901. Die Polarität von Oocyte, Ei und Larve des Strongylocentrotus lividus. Zool. Jahrb. Anat. Ont. 14, 630–653.

    Google Scholar 

  • BOVERI, TH., 1918. 2 Fehlerquellen bei Merogonieversuchen und die Entwicklungsfähigkeit merogonischer und partiell-merogonischer Seeigelbastarde. Wilhelm Roux’ Arch. Entwicklungsmech. Organismen 44, 417–471.

    Google Scholar 

  • BRACHET, J., BIELIAVSKY, N., TENCER, R., 1962. Nouvelle observation et hypothèses sur la létalité chez les hybrides. Bull. Acad. roy. Belg. 48, 255–277.

    Google Scholar 

  • BRACHET, J., HULIN, N., 1970. Observations sur les acides dèsoxy-ribonucleiques des hybrides lètaux entre oursins. Exp. Cell Res. 60, 393–400.

    PubMed  CAS  Google Scholar 

  • BROOKBANK, J.W., 1970. DNA synthesis and development in reciprocal interordinal hybrids of a sea urchin and a sand dollar. Develop. Biol. 21, 29–47.

    PubMed  CAS  Google Scholar 

  • BROOKBANK, J.W., CUMMINS, D.E., 1972. Microspectrophotometry of nuclear DNA during the early development of a sea urchin, a sand dollar, and their interordinal hybrids. Develop. Biol. 29, 234–240.

    PubMed  CAS  Google Scholar 

  • CHAFFEE, R.R., MAZIA, D., 1963. Echinochrome synthesis in hybrid sea urchin embryos. Develop. Biol. 7, 502–512.

    PubMed  CAS  Google Scholar 

  • CHEN, P.S., 1958. Further studies on free amino acids and peptides in eggs and embryos of different sea urchin species and hybrids. Experientia 14, 369–371.

    PubMed  CAS  Google Scholar 

  • CHEN, P.S., 1962. Trennung der freien Aminosäuren und Peptide von Seeigeleiern mittels Ionenaustauschchromatographie. Rev. Suisse Zool. 69, 288–296.

    CAS  Google Scholar 

  • CHEN, P.S., 1967. Biochemistry of nuclei-cytoplasmic interactions in morphogenesis. In: The Biochemistry of Animal Development (R. Weber, ed.), Vol. II, pp. 115–191. New York and London: Academic Press.

    Google Scholar 

  • CHEN, P.S., 1971. Biochemical Aspects of Insect Development. Basel: Karger Verlag.

    Google Scholar 

  • CHEN, P.S., BACHMANN-DIEM, C, 1964. Studies on the transamination reactions in the larval fat body of Drosophila melanogaster. J. Insect Physiol. 10, 819–829.

    CAS  Google Scholar 

  • CHEN, P.S., BALTZER, F., 1958. Species-specific differences in free amino-acids and peptides in sea urchin eggs and embryos (pure species and hybrids). Nature 181, 98–100.

    PubMed  CAS  Google Scholar 

  • CHEN, P.S., BALTZER, F., 1962. Experiments concerning the incorporation of labeled adenine into ribonucleic acid in normal sea urchin embryos and in the hybrid Paracentrotus ♀ x Arbacia♂. Experientia 18, 522–524.

    CAS  Google Scholar 

  • CHEN, P.S., BALTZER, F., 1964. Further morphological and biochemical studies on normal and hybrid embryos of sea urchins. Experientia 20, 236–240.

    PubMed  CAS  Google Scholar 

  • CHEN, P.S., BALTZER, F., ZELLER, CH., 1960. Changes in nucleic acids in early amphibian and sea urchin embryos (pure species, merogonic and hybrid combinations). In: Symposium Germ Cells and Development (S. Ranzi, ed.), pp. 506–523. Milan: Inst. Intern. Embryol. and Fondazione A. Baseli.

    Google Scholar 

  • CHEN, P.S., LEVENBOOK, L., 1966. Studies on the haemolymph proteins of the blowfly Phormia regina. II. Synthesis and breakdown as revealed by isotopic labeling. J. Insect Physiol. 12, 1611–1627.

    PubMed  CAS  Google Scholar 

  • DENIS, S., 1968. Changes in the level of triphosphopyridine nucleotides during development of sea urchin eggs (normal and lethal hybrids). Biochim. Biophys. Acta 157, 212–214.

    PubMed  CAS  Google Scholar 

  • DENIS, H., BRACHET, J., 1969a. Gene expression in interspecific hybrids. I. DNA synthesis in the lethal cross Arbacia lixula ♂ x Paracentrotus lividus ♀. Proc. Nat. Acad. Sci. 62, 194–201.

    CAS  Google Scholar 

  • DENIS, H., BRACHET, J., 1969b. Gene expressions in interspecific hybrids. II. RNA synthesis in the lethal cross Arbacia lixula x Paracentrotus lividus ♀. Proc. Nat. Acad. Sci. 62, 438–445.

    CAS  Google Scholar 

  • DENIS, H., BRACHET, J., 1970. Expression du génome chez les hybrides interspecifiques. Fidélité de la transcription dans le croisement létal Arbacia lixula x Paracentrotus lividus ♀. Eur. J. Biochem. 13, 86–93.

    PubMed  CAS  Google Scholar 

  • DEUCHAR, E.M., 1961. Amino-acid activation in embryonic tissues of Xenopus laevis. I. Increased 32 p exchange between pyrophosphate and adenosine triphosphate in the presence of added 1-leucine. Exp. Cell Res. 25, 364–373.

    PubMed  CAS  Google Scholar 

  • ELSTER, H.J., 1935. Experimentelle Beiträge zur Kenntnis der Physiologie der Befruchtung bei Echinoiden. Wilhelm Roux’ Arch. Entwicklungsmech. Organismen 133, 1.

    Google Scholar 

  • FEDECKA-BRUNNER, B., ANDERSON, M., EPEL, D., 1971. Control of enzyme synthesis in early sea urchin development. Aryl sulfatase activity in normal and hybrid embryos. Develop. Biol. 25, 655–671.

    Google Scholar 

  • FEDECKA-BRUNNER, B., EPEL, D., 1969. Nuclear control of “lysosomal” aryl sulfatase activity in sea urchin embryos. J. Cell Biol. 43, 35a.

    Google Scholar 

  • FICQ, A., BRACHET, J., 1963. Métabolisme des acides nucleiques et des protéines chez les embryos normaux et les hybrides létaux entre echinodermes. Exp. Cell Res. 32, 90–108.

    PubMed  CAS  Google Scholar 

  • FLICKINGER, R.A., 1957. Evidence from sea urchin-sand dollar hybrid embryos for a nuclear control of alkaline phosphatase activity. Biol. Bull. 112, 21–27.

    CAS  Google Scholar 

  • GEUSKENS, M., 1968. Etude ultrastructurale des embryos normaux et des hybrides létaux entre echinodermes. Exp. Cell Res. 49, 477–487.

    PubMed  CAS  Google Scholar 

  • GIUDICE, G., 1973. Developmental Biology of the Sea Urchin Embryo. New York and London: Academic Press.

    Google Scholar 

  • GLIŠIN, V.R., GLIŠIN, M.V., 1964. Ribonucleic acid metabolism following fertilization in sea urchin eggs. Proc. Nat. Acad. Sci. 52, 1548–1553.

    PubMed  Google Scholar 

  • GRIFFITHS, M., 1965. A study of the synthesis of naphthaquinone pigments in the larvae of 2 species of sea urchins and their reciprocal hybrids. Develop. Biol. 11, 433–447.

    PubMed  CAS  Google Scholar 

  • GROSS, P.R., COUSINEAU, Q.H., 1963. Synthesis of spindle associated proteins in early cleavage. J. Cell Biol. 19, 260–265.

    PubMed  CAS  Google Scholar 

  • GROSS, P.R., KRAEMER, K., MALKIN, L.J., 1965. Base composition of RNA synthesized during cleavage of the sea urchin embryo. Biochem. Biophys. Res. Comm. 18, 569–575.

    PubMed  CAS  Google Scholar 

  • GUSTAFSON, T., 1952. Nitrogen metabolism, enzymic activity, and mitochondrial distribution in relation to differentiation in the sea urchin egg. From the Wenner-Gren Inst. Exp. Biol., Uppsala.

    Google Scholar 

  • GUSTAFSON, T., 1965. Morphogenetic significance of biochemical patterns in sea urchin embryos. In: The Biochemistry of Animal Development (R. Weber, ed.), Vol. I, pp. 139–202. New York and London: Academic Press.

    Google Scholar 

  • GUSTAFSON, T., HASSELBERG, I., 1950. Alkaline phosphatase activity in developing sea urchin eggs. Exp. Cell Res. 1, 371–375.

    CAS  Google Scholar 

  • GUSTAFSON, T., HASSELBERG, I., 1951. Studies on enzymes in the developing sea urchin egg. Exp. Cell Res. 2, 642–672.

    CAS  Google Scholar 

  • GUSTAFSON, T., HJELTE, M.B., 1951. The amino acid metabolism of the developing sea urchin egg. Exp. Cell Res. 11, 474–490.

    Google Scholar 

  • GUSTAFSON, T., HÖRSTADIUS, S., 1957. Changes in the determination of the sea urchin egg induced by amino acids. Pubbl. Sta. Zool. Napoli 29, 407–424.

    CAS  Google Scholar 

  • GUSTAFSON, T., LENICQUE, P., 1952. Studies on mitochondria in the developing sea urchin egg. Exp. Cell Res. 3, 251–274.

    CAS  Google Scholar 

  • HAGSTRÖM, B.E., 1956. Studies on the fertilization of jelly-free sea urchin eggs. Exp. Cell Res. 10, 24–28.

    PubMed  Google Scholar 

  • HAGSTRÖM, B.E., 1959. Experiments on hybridization of sea urchins. Arkiv Zool., Ser. 2, 12, 127–135.

    Google Scholar 

  • HARDING, C.V., HARDING, D., 1952a. Cross fertilization with the sperm of Arbacia lixula. Exp. Cell Res. 3, 475–484.

    CAS  Google Scholar 

  • HARDING, C.V., HARDING, D., 1952b. The hybridization of Echinocardium cordatum and Psammechinus miliaris. Arkiv Zool. 4, 91–93.

    Google Scholar 

  • HARDING, C.V., HARDING, D., PERLMANN, P., 1954. Antigens in sea urchin hybrid embryos. Exp. Cell Res. 6, 202–210.

    PubMed  CAS  Google Scholar 

  • HARVEY, E.B., 1956. The American Arbacia and other sea urchins. New Jersey: Princeton University Press.

    Google Scholar 

  • HÖRSTADIUS, S., 1936. Studien über heterosperme Seeigelmerogone nebst Bemerkungen über einige Keimblattchimäsen. Mém. Mus. R. d’Hist. Nat. Bruxelles, sér. 2, fasc. 3, 801–880.

    Google Scholar 

  • HULTIN, T., 1948a. Species specificity in fertilization reaction. The role of the vistelline membrane of sea urchin eggs in species specificity. Arkiv Zool. 40A, no. 12, 1–9.

    Google Scholar 

  • HULTIN, T., 1948b. Species specificity in fertilization reaction. II. Influence of certain factors on the cross-fertilization capacity of Arbacia lixula (L.). Arkiv Zool. 40A, no. 20, 1–8.

    Google Scholar 

  • HULTIN, T., 1961. The effect of puromycin on protein metabolism and cell division in fertilized sea urchin eggs. Experientia 17, 410–411.

    PubMed  CAS  Google Scholar 

  • IMMERS, J., RUNNSTRÖM, J., 1960. Release of respiratory control by 2,4-dinitrophenol in different stages of sea urchin development. Develop. Biol. 2, 90–104.

    PubMed  CAS  Google Scholar 

  • KAESTNER, A., 1963. Lehrbuch der speziellen Zoologie. (Teil I. Wirbellose), pp. 1160–1299. Jena: Gustav Fischer.

    Google Scholar 

  • KAVANAU, J.L., 1953. Metabolism of free amino acids, peptides and proteins in early sea urchin development. J. exp. Zool. 122, 285–337.

    CAS  Google Scholar 

  • KAVANAU, J.L., 1954a. Amino acid metabolism in developing sea urchin embryos. Exp. Cell Res. 6, 563–566.

    PubMed  CAS  Google Scholar 

  • KAVANAU, J.L., 1954b. Amino acid metabolism in the early development of the sea urchin Paracentrotus lividus. Exp. Cell Res. 7, 530–557.

    PubMed  CAS  Google Scholar 

  • LINDAHL, P.E., 1939. Zur Kenntnis der Entwicklungsphysiologie des Seeigeleies. Z. vergl. Physiol. 21, 233–250.

    Google Scholar 

  • LOEB, J., 1904. Über Befruchtung, künstliche Parthenogenese und Cytolyse des Seeigeleies. Pflüger’s Arch. ges. Physiol. 103, 257–265.

    CAS  Google Scholar 

  • LUNDBLAD, G., 1949. Proteolytic activity in eggs and sperms from sea urchins. Nature 163, 643.

    PubMed  CAS  Google Scholar 

  • LUNDBLAD, G., 1950. Proteolytic activity in sea urchin gametes. Exp. Cell Res. 1, 264–271.

    CAS  Google Scholar 

  • MARKMAN, B., 1961a. Regional differences in isotopic labeling of nucleic acid and protein in early sea urchin development. Exp. Cell Res. 23, 118–129.

    PubMed  CAS  Google Scholar 

  • MARKMAN, B., 1961b. Differences in isotopic labeling of nucleic acid and protein in sea urchin embryos developing from animal and vegetal egg halves. Exp. Cell Res. 25, 224–227.

    PubMed  CAS  Google Scholar 

  • MCCLUNG, C.E., 1939. Chromosome numbers in animals. Tab. Biol. 18, 34.

    Google Scholar 

  • MONROY, A., GROSS, P.R., 1967. The control of gene action during echinoderm embryogenesis. Exp. Biol. Med. 1, 37–51.

    CAS  Google Scholar 

  • MONROY, A., MAGGIO, R., 1966. Amino acid metabolism in the developing embryos. In: Physiology of Echinodermata (R.A. Boolootian, ed.), pp. 74 3–756. New York, London and Sidney: John Wiley and Sons.

    Google Scholar 

  • MONROY, A., MAGGIO, R., RINALDI, A.M., 1965. Experimentally induced activation of the ribosomes of the unfertilized sea urchin egg. Proc. Nat. Acad. Sci. 54, 107–111.

    PubMed  CAS  Google Scholar 

  • MOOG, F., 1965. Enzyme development in relation to functional differentiation. In: The Biochemistry of Animal Development (R. Weber, ed.), Vol. I, pp. 307–365. New York and London: Academic Press.

    Google Scholar 

  • MOORE, A.R., 1943. Maternal and paternal inheritance in the plutei of hybrids of the sea urchins Strongylocentrotus purpuratus and Strongylocentrotus franciscanus. J. exp. Zool. 94, 211–228.

    Google Scholar 

  • MOORE, A.R., 1957. Biparental inheritance in an interordinal cross of sea urchin and sand dollar. J. exp. Zool. 135, 75–79.

    PubMed  CAS  Google Scholar 

  • NEMER, M., 1963. Old and new RNA in the embryogenesis of the purple sea urchin. Proc. Nat. Acad. Sci. 50, 230–235.

    PubMed  CAS  Google Scholar 

  • NEMER, M., BARD, S.G., 1963. Polypeptide synthesis in sea urchin embryogenesis: An examination with synthetic polyribonucleotides. Science 140, 664–666.

    PubMed  CAS  Google Scholar 

  • NEMER, M., INFANTE, A.A., 1965. Messenger RNA in early sea urchin embryos: size classes. Science 150, 217–221.

    PubMed  CAS  Google Scholar 

  • OZAKI, H., 1965. Differentiation of esterases in the development of echinoderms and their hybrids. Ph.D. Thesis, University of Washington. (Cited in Whiteley and Whiteley, 1972).

    Google Scholar 

  • OZAKI, H., WHITELEY, A.H., 1970. L-malate dehydrogenase in the development of the sea urchin Strongylocentrotus purpuratus. Develop. Biol. 21, 196–215.

    PubMed  CAS  Google Scholar 

  • PAIGEN, K., 1963. Changes in inducibility of galactochinase and galactocidase during inhibition of growth in Escherichia coli. Biochem. Biophys. Acta 77, 318–328.

    PubMed  CAS  Google Scholar 

  • PERLMANN, P., 1953. Soluble antigens in sea urchin gametes and developmental stages. Exp. Cell Res. 5, 394–399.

    PubMed  CAS  Google Scholar 

  • PERLMANN, P., GUSTAFSON, T., 1948. Antigens in the egg and early developmental stages of the sea urchin. Experientia 40, 481–483.

    Google Scholar 

  • RUNNSTRöM, J., 1952. The cell surface in relation to fertilization. Symp. Soc. exp. Biol. 6, 39–88.

    Google Scholar 

  • RUNNSTRÖM, J., MONNE, L., BROMAN, L., 1943. On some properties of the surface layers in the sea urchin egg and their changes upon activation. Arkiv Zool. 35A, no. 3, 1–32.

    Google Scholar 

  • SPIEGEL, M., OZAKI, H., TYLER, A., 1965. Electrophoretic examination of soluble proteins synthesized in early sea urchin development. Biochem. Biophys. Res. Comm. 21, 135–140.

    PubMed  CAS  Google Scholar 

  • SPIRIN, A.S., NEMER, M., 1965. Messenger RNA in sea urchin embryos: cytoplasmic particles. Science 150, 214–217.

    PubMed  CAS  Google Scholar 

  • TAYLOR, C.V., TENNENT, D.H., 1924. Preliminary report on the development of egg fragments. Carnegie Inst. Year Book Nr. 23.

    Google Scholar 

  • TENNENT, D.H., 1912b. Studies in cytology I. A further study of the ters in Echinoderm hybrids. Wilhelm Roux’ Arch. Entwicklungsmech. Organismen 29, 1–14.

    Google Scholar 

  • TENNENT, D.H., 1912a. The behavior of the chromosomes in cross-fertilized echinoid eggs. J. Morph. 23, 17–29.

    Google Scholar 

  • TENNENT, D.H., 1912b. Studies in cytology I. A further study of the chromosomes of Toxopneustes variegatus. II. The behavior of the chromosomes in Arbacia-Toxopneustes crosses. J. exp. Zool. 12, 391–411.

    Google Scholar 

  • TENNENT, D.H., 1914. The early influence of the spermatozoan upon the characters of echinoid larvae. Carnegie Inst. Wash. 5, 127–138.

    Google Scholar 

  • TERMAN, S.A., GROSS, P.R., 1965. Translation-level control of protein synthesis during early development. Biochem. Biophys. Res. Comm. 21, 595–600.

    PubMed  CAS  Google Scholar 

  • TYLER, A., TYLER, B.S., 1966. Physiology of fertilization and early development. In: Physiology of Echinodermata (R.S. Boolootian, ed.), pp. 683–741. New York, London and Sydney: Interscience Publishers, John Wiley and Sons.

    Google Scholar 

  • UBISCH, VON, L., 1953. Über Seeigelmerogone. Experientia 9, 294.

    Google Scholar 

  • UBISCH, VON, L., 1954. Über Seeigelmerogone. Pubbl. Sta. Zool. Napoli 25, 246–340.

    Google Scholar 

  • UBISCH, VON, L., 1955. Über Seeigelbastarde. Exp. Cell Res. Suppl. 3, 358–365.

    Google Scholar 

  • UBISCH, VON, L., 1957a. Merogone und Bastarde von Seeigeln. Nova Acta Leopoldina 19, 5–12.

    Google Scholar 

  • UBISCH, VON, L., 1957b. Über Seeigelmerogone II. Pubbl. Sta. Zool. Napoli 30, 279–308.

    Google Scholar 

  • UBISCH, VON, L., 1959. Die Entwicklung von Genocidaris maculata und Sphaerechinus granularis, sowie Bastarde und Merogone von Genocidaris. Pubbl. Sta. Zool. Napoli 31, 159–208.

    Google Scholar 

  • VILLIGER, M., CZIHAK, G., TARDENT, P., BALTZER, F., 1970. Feulgen microspectrophotometry of spermatozoa and blastula nuclei of different sea urchin species. Exp. Cell Res. 60, 119–126.

    PubMed  CAS  Google Scholar 

  • WHITELEY, A.H., BALTZER, F., 1958. Development, respiratory rate and content of desoxyribonucleic acid in the hybrid Paracentrotus ♀ x Arbacia ♂. Pubbl. Sta. Zool. Napoli 30, 402–457.

    CAS  Google Scholar 

  • WHITELEY, H.R., MCCARTHY, B.J., WHITELEY, A.H., 1970. Conservatism of base sequences in RNA for early development of echinoderms. Develop. Biol. 21, 216–242.

    PubMed  CAS  Google Scholar 

  • WHITELEY, A.H., WHITELEY, H.R., 1972. The replication and expression of maternal and paternal genomes in a blocked echinoid hybrid. Develop. Biol. 29, 183–198.

    PubMed  CAS  Google Scholar 

  • WILDE, C.E., 1955a. The urodele neuroepithelium. I. The differentiation in vitro of the cranial neural crest. J. exp. Zool. 130, 573–596.

    Google Scholar 

  • WILDE, C.E., 1955b. The urodele neuroepithelium. II. The relationship between phenylalanine metabolism and the differentiation of neural crest cells. J. Morph. 97, 313–344.

    CAS  Google Scholar 

  • WILDE, C.E., 1956. The urodele neuroepithelium. III. The presentation of phenylalanine to the neural crest by archenteron roof mesoderm. J. exp. Zool. 133, 409–440.

    CAS  Google Scholar 

  • YOUNG, R.S., 1958. Development of pigment in the larvae of the sea urchin, Lytechinus variegatus. Biol. Bull. 114, 394–403.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Chen, P.S., Baltzer, F. (1975). Morphology and Biochemistry of Diploid and Androgenetic Haploid (Merogonic) Hybrids. In: Czihak, G. (eds) The Sea Urchin Embryo. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65964-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65964-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65966-9

  • Online ISBN: 978-3-642-65964-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics