Skip to main content

Functional Significance of Different Pathways of CO2 Fixation in Photosynthesis

  • Chapter
Physiological Plant Ecology II

Part of the book series: Encyclopedia of Plant Physiology ((920,volume 12 / B))

Abstract

The functional significance of different photosynthetic CO2 fixation pathways is a question which can be answered in many ways, each being appropriate to certain scales of enquiry. In physiological ecology our purpose should be to integrate these different scales of enquiry as comprehensively as possible, and to show how photosynthesis contributes, directly or indirectly, to performance and survival of plants in diverse habitats. Studies of photosynthetic CO2 fixation were afflicted with a post-Calvin cycle chauvinism in the 1950’s, which may have been responsible for the slow and tentative revelation of the C4 pathway of photosynthetic carbon assimilation in the USA and USSR (Burr et al. 1957; Karpilov 1960; Kortschak et al. 1965). Elucidation of this pathway undoubtedly stimulated new interest in the carbon metabolism of photosynthesis in the next decade (Hatch and Slack 1966, 1970; CC Black 1973) and led to an upsurge in comparative studies of higher plant photosynthesis (Black 1971; Björkman 1973). Largely as a result of this stimulus, the peculiar dark CO2 fixation processes of succulent plants, known as crassulacean acid metabolism (CAM), were also recognized as a distinctive photosynthetic process (Kluge and Ting 1978; Osmond 1978). It also led to the present revival of interest in the photosynthesis of aquatic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abelson PH, Hoering TC (1961) Carbon isotope fractionation in formation of amino acids by photosynthetic organisms. Proc Natl Acad Sci USA 47:623–632

    PubMed  CAS  Google Scholar 

  • Akazawa T (1979) Ribulose-1,5-bisphosphate carboxylase. In: Gibbs M, Latzko E (eds) Photosynthesis II. Carbon metabolism and related processes. Encyclopedia of plant physiology new ser Vol VI. Springer, Berlin Heidelberg New York, pp 208–229

    Google Scholar 

  • Allaway WG, Austin B, Slatyer RO (1974) Carbon dioxide and water vapour exchange parameters of photosynthesis in a Crassulacean plant Kalanchoe daigremontiana. Aust J Plant Physiol 1:397–405

    Google Scholar 

  • Allen ED, Spence DHN (1981) The differential ability of aquatic plants to utilize the inorganic carbon supply in fresh waters. New Phytol 87:269–283

    CAS  Google Scholar 

  • Andrews TJ, Abel KM (1979) Photosynthetic metabolism in seagrasses: 14C-labeling evidence for the C3 pathway. Plant Physiol 63:650–656

    PubMed  CAS  Google Scholar 

  • Arens K (1939) Physiologische Multipolarität der Zelle von Nitella während der Photosynthese. Protoplasma 33:295–300

    CAS  Google Scholar 

  • Badger MR (1980) Kinetic properties of ribulose-1,5-bisphosphate carboxylase-oxygenase from Anabaena variabilis. Arch Biochem Biophys 201:247–254

    PubMed  CAS  Google Scholar 

  • Badger MR, Kaplan A, Berry JA (1977) The internal CO2 pool of Chlamydomonas reinhardtii: response to external CO2. Carnegie Inst Washington Yearb 76:362–366

    Google Scholar 

  • Badger MR, Kaplan A, Berry JA (1978) A mechanism for concentrating CO2 in Chlamydomonas reinhardtii and Anabaena variabilis and its role in photosynthetic CO2 fixation. Carnegie Inst Washington Yearb 77:251–261

    Google Scholar 

  • Bartholomew DP, Kadzimin SB (1975) The ecophysiology of pineapple. In: Alvim PT (ed) The ecophysiology of tropical crops Vol 1. CEPLAC, Bahia, pp 1–58

    Google Scholar 

  • Baskin JM, Baskin CC (1978) A discussion of the growth and competitive ability of C3 and C4 plants. Castanea 43:71–76

    Google Scholar 

  • Beer S, Eshel A, Waisel Y (1977) Carbon metabolism in seagrasses. I. The utilization of exogenous inorganic carbon species in photosynthesis. J Exp Bot 28:1180–1189

    CAS  Google Scholar 

  • Bender MM (1968) Mass spectrometric studies of carbon-13 variations in corn and other grasses. Radiocarbon 10:468–472

    Google Scholar 

  • Bender MM (1971) Variation in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10:1239–1244

    CAS  Google Scholar 

  • Bender MM, Berge AJ (1979) Influence of N and K fertilization and growth temperature on 13C/12C ratios in Thimothy (Phleumpratense L.). Oecologia 44:117–118

    Google Scholar 

  • Bender MM, Rouhani I, Vines HM, Black CC (1973) 13C/12C ratio changes in crassulacean acid metabolism plants. Plant Physiol 52:427–430

    PubMed  CAS  Google Scholar 

  • Benedict CR (1978) Nature of obligate photoautotrophy. Annu Rev Plant Physiol 29:67–93

    CAS  Google Scholar 

  • Benedict CR, Scott JR (1976) Photosynthetic carbon metabolism of a marine grass. Plant Physiol 57:876–880

    PubMed  CAS  Google Scholar 

  • Benedict CR, Wong WWL, Wong JHH (1980) Fractionation of the stable isotopes of inorganic carbon by seagrasses. Plant Physiol 65:512–517

    PubMed  CAS  Google Scholar 

  • Benzing DH, Renfrow A (1971) Significance of the patterns of CO2 exchange to the ecology and phylogeny of the Tillandsioideae (Bromeliaceae). Bull Torrey Bot Club 98:322–327

    Google Scholar 

  • Berry JA, Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–543

    Google Scholar 

  • Berry JA, Farquhar GD (1978) The CO2 concentrating function of C4 photosynthesis. A biochemical model. In: Hall DO, Coombs J, Goodwin TW (eds) Photosynthesis 77. Biochem Soc, London, pp 119–131

    Google Scholar 

  • Berry JA, Boynton J, Kaplan A, Badger MR (1976) Growth and photosynthesis of Chlamydomonas reinhardtii as a function of CO2 concentration. Carnegie Inst Washington Yearb 75:432–433

    Google Scholar 

  • Berry JA, Osmond CB, Lorimer GH (1978) Fixation of 18O2 during photorespiration: kinetic and steady state studies of the photorespiratory carbon oxidation cycle with intact leaves and isolated chloroplasts of C3 plants. Plant Physiol 62:954–967

    PubMed  CAS  Google Scholar 

  • Björkman O (1966) The effect of oxygen on photosynthesis in higher plants. Physiol Plant 19:618–633

    Google Scholar 

  • Björkman O (1971) Comparative CO2 exchange in higher plants. In: Hatch MD, Osmond CB, Slatyer RO (eds) Photosynthesis and photorespiration, Wiley-Interscience, New York, pp 18–32

    Google Scholar 

  • Björkman O (1973) Comparative studies on photosynthesis in higher plants. In: Giese A (ed) Current topics in photobiology, photochemistry, and photophysiology Vol VIII. Academic Press, London New York, pp 1–63

    Google Scholar 

  • Björkman O (1975) Environmental and biological control of photosynthesis: inaugural address. In: Marcelle R (ed) Environmental and biological control of photosynthesis. Junk, The Hague, pp 1–16

    Google Scholar 

  • Björkman O (1976) Adaptive and genetic aspects of C4 photosynthesis. In: Burris RH, Black CC (eds) CO2 metabolism and plant productivity. Univ Park Press, Baltimore, pp 287–309

    Google Scholar 

  • Björkman O, Mooney HA, Ehleringer J (1975) Photosynthetic responses of plants from habitats with contrasting thermal environments. Carnegie Inst Washington Yearb 74:743–748

    Google Scholar 

  • Björkman O, Boynton J, Berry J (1976) Comparison of the heat stability of photosynthesis, chloroplast membrane reactions, photosynthetic enzymes, and soluble protein in leaves of heat-adapted and cool-adapted C4 species. Carnegie Inst Washington Yearb 75:400–407

    Google Scholar 

  • Black CC (1971) Ecological implications of dividing plants into groups with distinct photosynthetic production capacities. Adv Ecol Res 7:87–114

    Google Scholar 

  • Black CC (1973) Photosynthetic carbon fixation in relation to net CO2 uptake. Annu Rev Plant Physiol 24:253–286

    CAS  Google Scholar 

  • Black CC, Bender MM (1976) δ 13C values in marine organisms from the Great Barrier Reef. Aust J Plant Physiol 3:25–32

    CAS  Google Scholar 

  • Black CC, Goldstein LD, Ray TB, Kestler DP, Mayne BC (1976) The relationship of plant metabolism to internal leaf and cell morphology and to efficiency of CO2 assimilation. In: Burris RH, Black CC (eds) CO2 metabolism and plant productivity. Univ Park Press, Baltimore, pp 113–139

    Google Scholar 

  • Black MA (1973) Exogenous inorganic carbon sources in the photosynthesis of aquatic plants. M Sc Thesis, Univ St Andrews

    Google Scholar 

  • Blinks LR (1963) The effect of pH upon the photosynthesis of littoral marine algae. Protoplasma 57:126–136

    CAS  Google Scholar 

  • Bloom AJ (1979a) Salt requirement for Crassulacean acid metabolism in the annual succulent, Mesembryanthemum crystallinum. Plant Physiol 63:748–753

    Google Scholar 

  • Bloom AJ (1979b) Diurnal ion fluctuations in the mesophyll tissue of the Crassulacean acid metabolism plant Mesembryanthemum crystallinum. Plant Physiol 64:919–923

    PubMed  CAS  Google Scholar 

  • Boag S, Brownell PF (1979) C4 photosynthesis in sodium-deficient plants. Aust J Plant Physiol 6:431–434

    CAS  Google Scholar 

  • Boardman NK (1978) Solar energy conversion in photosynthesis: potential contribution to world demand for liquid and gaseous fuels. In: Hall DO, Coombs J, Goodwin TW (eds) Photosynthesis 77. Biochem Soc, London, pp 636–644

    Google Scholar 

  • Boutton TW, Harrison AT, Smith BN (1980) Distribution of biomass of species differing in photosynthetic pathway along an altitudinal transect in southeastern Wyoming grassland. Oecologia 45:287–298

    Google Scholar 

  • Bowes G, Holaday AS, Van TK, Haller WT (1977) Photosynthetic and photorespiratory carbon metabolism in aquatic plants. In: Hall DO, Coombs J, Goodwin TW (eds) Photosynthesis 77. Biochem Soc, London, pp 289–298

    Google Scholar 

  • Briggs GE, Whittingham CP (1952) Factors affecting the rate of photosynthesis of Chlorella at low concentrations of carbon dioxide and in high illumination. New Phytol 51:236–249

    CAS  Google Scholar 

  • Brown JMA, Dromgoole FI, Towse MW, Browse JA (1974) Photosynthesis and photorespiration in aquatic macrophytes. Roy Soc NZ Bull 12:243–249

    Google Scholar 

  • Brown RH (1978) A difference in the N use efficiency in C3 and C4 plants and its implications in adaptation and evolution. Crop Sci 18:93–98

    CAS  Google Scholar 

  • Brown RH, Brown WV (1975) Photosynthetic characteristics of Panicum milioides, a species with reduced photorespiration. Crop Sci 15:681–685

    Google Scholar 

  • Brown WV (1977) The Kranz syndrome and its subtypes in grass systematics. Mem Torrey Bot Club 23:1–97

    CAS  Google Scholar 

  • Brownell PF, Crossland CL (1972) The requirement for sodium as a micronutrient by species having the C4 dicarboxylic acid photosynthetic pathway. Plant Physiol 49:794–797

    PubMed  CAS  Google Scholar 

  • Brownell PF, Crossland CJ (1974) Growth responses to sodium by Bryophyllum tubiflorum under conditions inducing Crassulacean acid metabolism. Plant Physiol 54:416–417

    PubMed  CAS  Google Scholar 

  • Brownell PF, Wood JG (1957) Sodium as an essential micronutrient element for Atriplex vesicaria Heward. Nature (London) 179:635–636

    CAS  Google Scholar 

  • Browse JA, Brown JMA, Dromgoole FI (1979a) Photosynthesis in the aquatic macrophyte Egeria densa. II. Effects of inorganic carbon conditions on 14C fixation. Aust J Plant Physiol 6:1–9

    CAS  Google Scholar 

  • Browse JA, Dromgoole FI, Brown JMA (1979b) Photosynthesis in the aquatic macrophyte Egeria densa. III. Gas exchange studies. Aust J Plant Physiol 6:499–512

    CAS  Google Scholar 

  • Buch K (1960a) Dissoziation der Kohlensäure, Gleichgewichte und Puffersysteme. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie Vol I. Springer, Berlin Göttingen Heidelberg, pp 1–11

    Google Scholar 

  • Buch K (1960b) Kohlendioxyd im Meerwasser. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie Vol I. Springer, Berlin Göttingen Heidelberg, pp 47–61

    Google Scholar 

  • Burr GO, Hartt CE, Brodie HW, Tanimoto T, Kortschak HP, Takahashi D, Ashton FM, Coleman RE (1957) The sugar cane plant. Annu Rev Plant Physiol 8:275–298

    CAS  Google Scholar 

  • Caldwell MM (1975) Primary production of grazing lands. In: Copper JP (ed) Photosynthesis and productivity in different environments. IBP Vol 3. Univ Press, Cambridge, pp 41–73

    Google Scholar 

  • Caldwell MM, Camp LB (1974) Below ground productivity of two cool desert communities. Oecologia 17:123–130

    Google Scholar 

  • Caldwell MM, Osmond CB, Nott DL (1977a) C4 pathway photosynthesis at low temperature in cold-tolerant Atriplex species. Plant Physiol 60:157–164

    PubMed  CAS  Google Scholar 

  • Caldwell MM, White RS, Moore RT, Camp LB (1977b) Carbon balance, productivity, and water use of cold-winter desert shrub communities dominated by C3 and C4 species. Oecologia 29:275–300

    Google Scholar 

  • Carolin RC, Jacobs SWL, Vesk M (1975) Leaf structure in Chenopodiaceae. Bot Jahrb Syst 95:226–255

    Google Scholar 

  • Cockburn W, Ting IP, Sternberg LO (1979) Relationship between stomatal behavior and internal carbon dioxide concentration in Crassulacean acid metabolism plants. Plant Physiol 63:1029–1032

    PubMed  CAS  Google Scholar 

  • Cornic G (1976) Effet exercé sur l’activité photosynthetique du Sinapis alba L. par une inhibition temporaire de la photorespiration se déroulant dans un air sans CO2. CR Acad Sci Ser D 282:1955–1958

    CAS  Google Scholar 

  • Coutinho LM (1969) Novas observacoes sobre a ocorrencia do “efeito de de Saussure” e suas relacoes com a suculencia, a temperatura folhear e os movimentos estomaticos. Botanica 24:44–102

    Google Scholar 

  • Craig H, Gordon LI (1965) Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. Proc Spoleto Conf Stable Isotopes in Oceanographic studies and paleotemperatures, Pisa

    Google Scholar 

  • Crookston RK, Moss DN (1972) C-3 and C-4 carboxylation characteristics in the genus Zygophyllum (Zygophyllaceae). Ann Mo Bot Gard 59:465–470

    Google Scholar 

  • Davidson RL (1969a) Effect of root-leaf temperature differentials on root/shoot ratios in some pasture grasses and clover. Ann Bot (London) 33:561–569

    Google Scholar 

  • Davidson RL (1969 b) Effects of soil nutrients and moisture on root/shoot ratio in Lolium perenne L. and Trifolium repens. Ann Bot (London) 33:571–577

    Google Scholar 

  • Despain DG, Bliss LC, Boyer JS (1970) Carbon dioxide exchange in suguaro seedlings. Ecology 51:912–914

    CAS  Google Scholar 

  • Deuser WG, Degens ET (1967) Carbon isotope fractionation in the system CO2 (gas) - CO2 (aqueous) - HCO3 - (aqueous). Nature (London) 215:1033–1035

    CAS  Google Scholar 

  • Dodd AP (1940) The biological campaign against prickly pear. Queensl Gov Printer, Brisbane

    Google Scholar 

  • Doliner LH, Joliffe PA (1979) Ecological evidence concerning the adaptive significance of the C4 dicarboxylic acid pathway of photosynthesis. Oecologia 38:23–34

    Google Scholar 

  • Dromgoole FI (1978) The effects of pH and inorganic carbon on photosynthesis and dark respiration of Carpophyllum (Fucales, Phaeophyceae). Aquat Bot 4:11–22

    CAS  Google Scholar 

  • Dunstone RL, Gifford RM, Evans LT (1973) Photosynthetic characteristics of modern and primitive wheat species in relation to ontogeny and adaptation to light. Aust J Biol Sci 26:295–307

    Google Scholar 

  • Eder A, Stichler W, Ziegler H (1981) Mechanismen der CO2-Fixierung bei Euphorbia trigona Haw. und einigen Pachypodium-Arten. Biol Biochem Pflanz 176:1–12

    CAS  Google Scholar 

  • Edwards GE, Huber SC (1981) C4 pathway. In: Hatch MD, Boardman NK (eds) The biochemistry of plants: a comprehensive treatise Vol VIII. Academic Press, London New York pp 237–282

    Google Scholar 

  • Ehleringer JR (1978) Implications of quantum yield differences on the distributions of C3 and C4 grasses. Oecologia 31:255–267

    Google Scholar 

  • Ehleringer J, Björkman O (1977) Quantum yields for CO2 uptake in C3 and C4 plants. Plant Physiol 59:86–90

    PubMed  CAS  Google Scholar 

  • Eickmeier WG, Bender MM (1976) Carbon isotope ratios of Crassulacean acid metabolism species in relation to climate and phytosociology. Oecologia 25:341–347

    Google Scholar 

  • Evenari M, Shanan L, Tadmor N (1971) The Negev. The challenge of a desert. Harvard Univ Press, Cambridge, Massachusetts

    Google Scholar 

  • Farquhar GD, Firth PM, Wetselaar R, Weir B (1980) On the gaseous exchange of ammonia between leaves and the environment: Determination of the ammonia compensation point. Plant Physiol 66:710–714

    PubMed  CAS  Google Scholar 

  • Findenegg GR (1976) Correlations between accessibility of carbonic anhydrase for external substrate and regulation of photosynthetic use of CO2 and HCO3 - by Scenedesmus obliquus. Z Pflanzenphysiol 79:428–447

    CAS  Google Scholar 

  • Gallaher RN, Ashley DA, Brown RH (1975) 14C-photosynthate translocation in C3 and C4 plants as related to leaf anatomy. Crop Sci 15:55–59

    CAS  Google Scholar 

  • Gerwick BC, Williams GJ III (1978) Temperature and water regulation of gas exchange of Opuntia polyacantha. Oecologia 35:149–159

    Google Scholar 

  • Gibbs M, Latzko E (1979) (eds) Photosynthesis II: Photosynthetic carbon metabolism and related processes. Encyclopedia of plant physiology new ser Vol VI. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Gifford RM (1974) A comparison of potential photosynthesis, productivity and yield of plant species with differing photosynthetic metabolism. Aust J Plant Physiol 1:107–117

    CAS  Google Scholar 

  • Graham D, Reed ML (1971) Carbonic anhydrase and the regulation of photosynthesis. Nature (London) 231:81–83

    CAS  Google Scholar 

  • Graham DC, Atkins CA, Reed ML, Patterson BD, Smillie RM (1971) Carbonic anhydrase, photosynthesis, and light-induced pH changes. In: Hatch MD, Osmond CB, Slatyer RO (eds) Photosynthesis and photorespiration. Wiley-Interscience, New York, pp 267–274

    Google Scholar 

  • Guy RD, Reid DM, Krause HR (1980) Shifts in carbon isotope ratios of two C3 halophytes under natural and artifical conditions. Oecologia 44:241–247

    Google Scholar 

  • Haberlandt G (1884) Physiologische Pflanzenanatomie. Engelmann, Leipzig

    Google Scholar 

  • Hanscomb Z III, Ting IP (1978) Irrigation magnifies CAM-photosynthesis in Opuntia basilaris (Cactaceae). Oecologia 33:1–15

    Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic Press, London New York

    Google Scholar 

  • Hartman RT, Brown DL (1967) Changes in internal atmosphere of submersed vascular hydrophytes in relation to photosynthesis. Ecology 48:252–258

    Google Scholar 

  • Hatch MD (1971) The C4-pathway of photosynthesis. Evidence for an intermediate pool of carbon dioxide and the identity of the donor C4-dicarboxylic acid. Biochem J 125:425–432

    PubMed  CAS  Google Scholar 

  • Hatch MD, Osmond CB (1976) Compartmentation and transport in C4 photosynthesis. In: Heber U, Stocking CR (eds) Transport in plants III. Encyclopedia of plant physiology new ser Vol III. Springer, Berlin Heidelberg New York, pp 144–184

    Google Scholar 

  • Hatch MD, Slack CR (1966) Photosynthesis by sugarcane leaves. A new carboxylation reaction and the pathway of sugar formation. Biochem J 101:103–111

    PubMed  CAS  Google Scholar 

  • Hatch MD, Slack CR (1970) The C4 carboxylic acid pathway of photosynthesis. In: Reinhold L, Liwschitz Y (eds) Progress in phytochemistry. Wiley-Interscience, New York, pp 35–106

    Google Scholar 

  • Hattersley PW, Watson L, Osmond CB (1977) In-situ immunofluorescent labelling of ribulose-1,5-bisphosphate carboxylase in leaves of C3 and C4 plants. Aust J Plant Physiol 4:523–539

    CAS  Google Scholar 

  • Hilliard JH, West SH (1970) Starch accumulation associated with growth reduction at low temperatures in a tropical plant. Science 168:494–496

    PubMed  CAS  Google Scholar 

  • Hoch Hin Y, Badger MR, Watson L (1980) Variation in Km(CO2) of ribulose-1,5-bisphosphate carboxylase among grasses. Plant Physiol 66:1110–1112

    Google Scholar 

  • Hoch Hin Y, Badger MR, Watson L (1981) Variation in kinetic properties of ribulose-1,5-bisphosphate carboxylase among plants. Plant Physiol 67:1151–1155

    Google Scholar 

  • Hoffman GJ, Rawlins ST, Garber MJ, Cullen EM (1971) Water relations and growth of cotton as influenced by salinity and relative humidity. Agron J 63:822–826

    Google Scholar 

  • Hofstra G, Nelson CD (1969) A comparative study of translocation of assimilated 14C from leaves of different species. Planta 88:103–112

    CAS  Google Scholar 

  • Hofstra JJ, Stienstra AW (1977) Growth and photosynthesis of closely related C3 and C4 grasses, as influenced by light intensity and water supply. Acta Bot Neerl 26:63–72

    Google Scholar 

  • Hofstra JJ, Aksornkoae S, Atmowidjojo S, Banaag Santosa JF, Sastrohoetoma RA, Thu LTN (1972) A study on the occurrence of plants with a low CO2 compensation point in different habitats in the tropics. Ann Bogor 5:143–157

    Google Scholar 

  • Holaday AS, Bowes G (1980) C4 acid metabolism and dark CO2 fixation in a submersed aquatic macrophyte (Hydritta verticillata). Plant Physiol 65:331–335

    PubMed  CAS  Google Scholar 

  • Hough RA (1974) Photorespiration and productivity in submersed aquatic vascular plants. Limnol Oceanogr 19:912–927

    CAS  Google Scholar 

  • Hough RA, Wetzel RG (1972) A 14C-assay for photorespiration in aquatic plants. Plant Physiol 49:987–990

    PubMed  CAS  Google Scholar 

  • Hough RA, Wetzel RG (1977) Photosynthetic pathway of some aquatic plants. Aquat Bot 3:297–313

    CAS  Google Scholar 

  • Hough RA, Wetzel RG (1978) Photorespiration and CO2 compensation point in Najas flexilis. Limnol Oceanogr 23:719–724

    CAS  Google Scholar 

  • Huber W, Sankhla N (1976) C4 pathway and regulation of the balance between C4 and C3 metabolism. In: Lange OL, Kappen L, Schulze E-D (eds) Water and plant life: problems and modern approaches. Ecol Stud Vol 19. Springer, Berlin Heidelberg New York, pp 335–363

    Google Scholar 

  • Jarvis PG (1971) The estimation of resistances to carbon dioxide transfer. In: Šesták K, Čatský J, Jarvis PG (eds) Plant photosynthetic production: manual and methods. Junk, The Hague, pp 49–110

    Google Scholar 

  • Johnson HB (1975) Gas exchange strategies in desert plants. In: Gates DM, Schmerl M (eds) Perspectives of biophysical ecology. Ecol Stud Vol 12. Springer, Berlin Heidelberg New York, pp 105–120

    Google Scholar 

  • Joliffe EA, Tregunna EB (1970) Studies on HCO3 - ion uptake during photosynthesis in benthic marine algae. Phycologia 9:293–303

    Google Scholar 

  • Jones R, Hodgkinson KC, Rixon AJ (1970) Growth and productivity in rangeland species of Atriplex. In: Jones R (ed) The biology of Atriplex. CSIRO, Canberra, pp 31–42

    Google Scholar 

  • Kaplan A, Gale J, Poljakoff-Mayber A (1977) Effect of oxygen and carbon dioxide concentration on gross dark CO2 fixation and dark respiration in Bryophyllum daigremontianum. Aust J Plant Physiol 4:745–752

    CAS  Google Scholar 

  • Karpilov YS (1960) The distribution of radioactivity of 14C among the products of photosynthesis in maize. Trans Kazan Agric Inst 41:15–24

    CAS  Google Scholar 

  • Kausch W (1965) Beziehungen zwischen Wurzelwachstum, Transpiration und CO2-Gaswechsel bei einigen Kakteen. Planta 66:229–238

    Google Scholar 

  • Keeley J (1981) Isoetes howellii: A submerged aquatic CAM plant? Am J Bot 68:420–424

    CAS  Google Scholar 

  • Keenan JD (1975) Bicarbonate utilization in Anabaena. Physiologia Plant 34:157–161

    CAS  Google Scholar 

  • Kern DM (1960) The hydration of carbon dioxide. J Chem Educ 37:14–23

    CAS  Google Scholar 

  • Kirk M, Heber U (1976) Rates of synthesis and source of glycolate in intact chloroplasts. Planta 132:131–141

    CAS  Google Scholar 

  • Kluge M (1977) Is Sedum acre a CAM-plant? Oecologia 29:77–83

    Google Scholar 

  • Kluge M, Ting IP (1978) Crassulacean acid metabolism: analysis of an ecological adaptation. Ecol Stud Vol 30. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kortschak HP, Hartt CE, Burr GO (1965) Carbon dioxide fixation in sugar cane leaves. Plant Physiol 40:209–213

    PubMed  CAS  Google Scholar 

  • Kremer BP, Küppers U (1977) Carboxylating enzymes and pathway of photosynthetic carbon assimilation in different marine algae — evidence for the C4-pathway? Planta 133:191–196

    CAS  Google Scholar 

  • Kremer BP, Markham JW (1979) Carbon assimilation by different developmental stages of Laminaria saccharina. Planta 144:497–501

    CAS  Google Scholar 

  • Kremer BP, Willenbrink J (1972) CO2-Fixierung und Stofftransport in benthischen marinen Algen. I. Zur Kinetik der 14CO2-Assimilation bei Laminaria saccharina. Planta 103:55–64

    CAS  Google Scholar 

  • Kroh GC, Stephenson SN (1980) Effect of diversity and pattern on relative yields of four Michigan first year fallow field plant species. Oecologia 45:366–371

    Google Scholar 

  • Ku SB, Edwards GE (1978) Photosynthetic efficiency of Panicum hians and Panicum milioides in relation to C3 and C4 plants. Plant Cell Physiol 19:665–675

    CAS  Google Scholar 

  • Küppers U, Kremer BP (1978) Longitudinal profiles of CO2 fixation capacities in marine macroalgae. Plant Physiol 62:49–53

    PubMed  Google Scholar 

  • Laetsch WM (1974) The C4 syndrome: a structural analysis. Annu Rev Plant Physiol 25:27–52

    CAS  Google Scholar 

  • Lange OL, Medina E (1979) Stomata of the CAM plant Tillandsia recurvata respond directly to humidity. Oecologia 40:357–363

    Google Scholar 

  • Lange OL, Zuber M (1977) Frerea indica, a stem succulent CAM plant with deciduous C3 leaves. Oecologia 31:67–72

    Google Scholar 

  • Lange OL, Zuber M (1980) Temperaturabhängigkeit des CO2-Gaswechsels stammsukkulenter Asclepiadaceen mit Säurestoffwechsel. Flora 170:529–553

    CAS  Google Scholar 

  • Lange OL, Schulze E-D, Kappen L, Evenari M, Buschbom U (1975) CO2 exchange pattern under natural conditions of Caralluma negevensis, a CAM plant of the Negev desert. Photosynthetica 9:318–326

    Google Scholar 

  • Lea PJ, Mifflin J (1979) Photosynthetic ammonia assimilation. In: Gibbs M, Latzko E (eds) Photosynthesis II: Photosynthetic carbon metabolism and related processes. Encyclopedia of plant physiology new ser. Vol VI. Springer, Berlin Heidelberg New York, pp 445–456

    Google Scholar 

  • Lerman JC (1975) How to interpret variations in the carbon isotope ratio of plants: biologic and environmental effects. In: Marcelle R (ed) Environmental and biological control of photosynthesis. Junk, The Hague, pp 323–335

    Google Scholar 

  • Lerman JC, Deleens E, Nato A, Moyse A (974) Variation in the carbon isotope composition of a plant with Crassulacean acid metabolism. Plant Physiol 53:581–584

    Google Scholar 

  • Lloyd NDH, Canvin DT, Bristow JM (1977) Photosynthesis and photorespiration in submerged aquatic vascular plants. Can J Bot 55:3001–3005

    CAS  Google Scholar 

  • Long SP, Incoll LD, Woolhouse HW (1975) C4 photosynthesis in plants from cool temperate regions with particular reference to Spartina townsendii. Nature (London) 257:622–624

    CAS  Google Scholar 

  • Loomis RS, Gerakis PA (1975) Productivity of agricultural ecosystems. In: Cooper JD (ed) Photosynthesis and productivity in different environments. IBP Vol III. Univ Press, Cambridge, pp 145–172

    Google Scholar 

  • Lorimer GH, Andrews TJ (1973) Plant photorespiration — an inevitable consequence of the existence of atmospheric oxygen. Nature (London) 243:359

    CAS  Google Scholar 

  • Lorimer GH, Andrews TJ (1981) The C2 photo- and chemorespiratory carbon oxidation cycle. In: Hatch MD, Boardman NK (eds) The biochemistry of plants: a comprehensive treatise Vol VIII. Academic Press, London New York, pp 329–374

    Google Scholar 

  • Lorimer GH, Woo KC, Berry JA, Osmond CB (1978) The C2 photorespiratory carbon oxidation cycle in leaves of higher plants: pathway and consequences. In: Hall DO, Coombs J, Goodwin TW (eds) Photosynthesis 77. Biochem Soc, London, pp 311–322

    Google Scholar 

  • Lucas WJ (1975) Photosynthetic fixation of 14 carbon by internodal cells of Chara corallina. J Exp Bot 26:331–346

    CAS  Google Scholar 

  • Lucas WJ (1976) The influence of Ca2+ and K+ on H14CO3 - influx in internodal cells of Chara corallina. J Exp Bot 27:32–42

    CAS  Google Scholar 

  • Lucas WJ (1979) Alkaline band formation in Chara corallina. Plant Physiol 63:248–254

    PubMed  CAS  Google Scholar 

  • Lucas WJ (1980) Control and synchronization of HCO3 - and OH- transport during photosynthetic assimilation of exogenous HCO3 -. In: Spanswick RM, Lucas WJ, Dainty J (eds) Plant membrane transport: current conceptual issues. Elsevier/North-Holland, Biomedica Press, Amsterdam New York, pp 317–327

    Google Scholar 

  • Lucas WJ, Tyree MT, Petrov A (1978) Characterization of photosynthetic 14carbon assimilation by Potamogeton lucens L. J Exp Bot 29:1409–1421

    CAS  Google Scholar 

  • Ludlow MM (1976) Ecophysiology of C4 grasses. In: Lange OL, Kappen L, Schulze E-D (eds) Water and plant life: problems and modern approaches. Ecol Stud Vol 19. Springer, Berlin Heidelberg New York, pp 364–386

    Google Scholar 

  • Ludlow MM, Wilson GL (1971) Photosynthesis of tropical pasture plants. I. Illuminance, carbon dioxide concentration, leaf temperature and leaf-air vapour pressure difference. Aust J Biol Sci 24:449–470

    Google Scholar 

  • Ludlow MM, Wilson GL (1972) Photosynthesis of tropical pasture plants. IV. Basis and consequences of differences between grasses and legumes. Aust J Biol Sci 25:1133–1145

    CAS  Google Scholar 

  • Lüttge U, Ball E (1979) Electrochemical investigation of active malic acid transport at the tonoplast into the vacuoles of the CAM plant Kalanchoe daigremontiana. J Membr Biol 47:401–422

    Google Scholar 

  • Lush WM, Evans LT (1974) Translocation of photosynthetic assimilate from grass leaves, as influenced by environment and species. Aust J Plant Physiol 1:417–431

    Google Scholar 

  • Martin B, Martensson O, Öquist G (1978) Effects of frost hardening and dehardening on photosynthetic electron transport and fluorescence properties in isolated chloroplasts of Pinus silvestris. Physiol Plant 43:297–305

    CAS  Google Scholar 

  • Medina E (1970) Relationships between nitrogen level, photosynthetic capacity and carboxydismutase activity in Atriplex patula leaves. Carnegie Inst Washington Yearb 69:655–662

    Google Scholar 

  • Medina E (1971) Effect of nitrogen supply and light intensity during growth on the photosynthetic capacity and carboxydismutase activity of leaves of Atriplex patula ssp. hastata. Carnegie Inst Washington Yearb 70:551–559

    Google Scholar 

  • Medina E, Delgado M (1976) Photosynthesis and night CO2 fixation in Echeveria columbiana v. Poellr. Photosynthetica 10:155–163

    CAS  Google Scholar 

  • Medina E, Minchin P (1980) Stratification of δ 13C values of leaves in Amazonian rain forests. Oecologia 45:377–378

    Google Scholar 

  • Medina E, Osmond CB (1981) Temperature dependence of dark CO2 fixation and acid accumulation in Kalanchoe daigremontiana. Aust J Plant Physiol 8:641–649

    CAS  Google Scholar 

  • Medina E, Delgado M, Troughton JH, Medina JD (1977) Physiological ecology of CO2 fixation in Bromeliaceae. Flora 166:137–152

    CAS  Google Scholar 

  • Meinzer FC, Rundel PW (1973) Crassulacean acid metabolism and water use efficiency in Echeveria pumila. Photosynthetica 7:358–364

    CAS  Google Scholar 

  • Miller AG, Coleman B (1980) Evidence for HCO3 - transport by the blue-green alga (Cyanobacterium) Coccochloris peniocystis. Plant Physiol 65:397–402

    PubMed  CAS  Google Scholar 

  • Monteith LJ (1978) Reassessment of maximum growth rates for C3 and C4 crops. Exp Agric 14:1–5

    CAS  Google Scholar 

  • Mooney HA, Troughton JH, Berry JA (1974) Arid climates and photosynthetic systems. Carnegie Inst Washington Yearb 73:793–805

    Google Scholar 

  • Mooney HA, Björkman O, Ehleringer J, Berry JA (1976) Photosynthetic capacity of in situ Death Valley plants. Carnegie Inst Washington Yearb 75:410–413

    Google Scholar 

  • Mooney HA, Throughton JH, Berry JA (1977) Carbon isotope measurements of succulent plants in southern Africa. Oecologia 30:295–306

    Google Scholar 

  • Morot-Gaudry JF, Farineau JP, Huer JC (1980) Oxygen effect on photosynthetic and glycolate pathways in young maize leaves. Plant Physiol. 66:1079–1084

    PubMed  CAS  Google Scholar 

  • Morris I, Farrell K (1971) Photosynthetic rates, gross patterns of carbon dioxide fixation and activities of ribulose diphosphate carboxylase in marine algae grown at different temperatures. Physiol Plant 25:372–377

    CAS  Google Scholar 

  • Mulroy TW, Rundel PW (1977) Annual plants; adaptations to desert environments. Bioscience 27:109–114

    Google Scholar 

  • Neales TF (1973a) The effect of night temperature on CO2 assimilation, transpiration and water use efficiency in Agave americana L. Aust J Biol Sci 26:705–714

    Google Scholar 

  • Neales TF (1973b) Effect of night temperature on the assimilation of carbon dioxide by mature pineapple plants Ananas comosus (L.) Merr. Aust J Biol Sci 26:539–546

    CAS  Google Scholar 

  • Nevins DJ, Loomis RS (1970) Nitrogen nutrition and photosynthesis in sugar beet. Crop Sci 10:21–25

    CAS  Google Scholar 

  • Nicholls AO (1972) An analysis of the growth of seedlings of four Atriplex L. species in controlled environments. Ph D Thesis, Univ Melbourne

    Google Scholar 

  • Nobel PS (1976) Water relations and photosynthesis of a desert CAM plant, Agave deserti. Plant Physiol 58:576–582

    PubMed  CAS  Google Scholar 

  • Nobel PS (1977) Water relations and photosynthesis of a barrel cactus, Ferocactus acanthodes, in the Colorado desert. Oecologia 27:117–133

    Google Scholar 

  • Nobel PS (1980) Interception of photo synthetically active radiation by cacti of different morphology. Oecologia 45:160–166

    Google Scholar 

  • Nobel PS, Hartsock TL (1978) Resistance analysis of nocturnal carbon dioxide uptake by a Crassulacean acid metabolism succulent, Agave deserti. Plant Physiol 61:510–514

    PubMed  CAS  Google Scholar 

  • Nobs MA, Pearcy RW, Berry JA, Nicholson F (1972) Reciprocal transplant responses of C3 and C4 Atriplexes. Carnegie Inst Washington Yearb 71:164–169

    Google Scholar 

  • Öquist G, Martensson O, Martin B, Malmberg G (1978) Seasonal effects on chlorophyll-protein complexes isolated from Pinus silvestris. Physiol Plant 44:187–192

    Google Scholar 

  • Österlind S (1951) Inorganic carbon sources of green algae. III. Measurements of photosynthesis in Scenedesmus quadricauda and Chlorella pyrenoidosa. Physiol Plant 4: 242–254

    Google Scholar 

  • Österlind S (1952) Inorganic carbon sources of green algae. IV. Further experiments concerning photoactivation of bicarbonate assimilation. Physiol Plant 5:403–408

    Google Scholar 

  • Öztürk M, Rehder H, Ziegler H (1981) Biomass production of C3- and C4-plant species in pure and mixed culture with different water supply. Oecologia 50:73–81

    Google Scholar 

  • O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20:553–567

    Google Scholar 

  • O’Leary MH, Osmond CB (1980) Diffusional contribution to carbon isotope fractionation during dark CO2 fixation in CAM plants. Plant Physiol 66:931–934

    PubMed  Google Scholar 

  • Osmond CB (1975) Environmental control of photo synthetic options in Crassulacean plants. In: Marcelle R (ed) Environmental and biological control of photosynthesis. Junk, The Hague, pp 311–321

    Google Scholar 

  • Osmond CB (1976) Ion absorption and carbon metabolism in cells of higher plants. In: Lüttge U, Pitman MG (eds) Transport in plants II. Encyclopedia of plant physiology, new ser Vol IIA. Springer, Berlin Heidelberg New York, pp 347–372

    Google Scholar 

  • Osmond CB (1978) Crassulacean acid metabolism: a curiosity in context. Annu Rev Plant Physiol 29:379–414

    CAS  Google Scholar 

  • Osmond CB (1981) Photorespiration and photoinhibition: some implications for the energetics of photosynthesis. Biochim Biophys Acta 639:77–98

    CAS  Google Scholar 

  • Osmond CB, Björkman O (1972) Simultaneous measurements of oxygen effects on net photosynthesis and glycolate metabolism in C3 and C4 species of Atriplex. Carnegie Inst Washington Yearb 71:141–148

    Google Scholar 

  • Osmond CB, Holtum JAM (1981) Crassulacean acid metabolism. In: Hatch MD, Boardman NK (eds) The biochemistry of plants: a comprehensive treatise Vol VIII. Academic Press, London New York, pp 283–328

    Google Scholar 

  • Osmond CB, Ziegler H (1975) Schwere und leichte Pflanzen: Stabile Isotope im Photo-synthesestoffwechsel und in der biochemischen Ökologie. Naturwiss Rundsch 28:323–328

    CAS  Google Scholar 

  • Osmond CB, Allaway WG, Sutton BG, Troughton JH, Queiroz O, Lüttge U, Winter K (1973) Carbon isotope discrimination in photosynthesis of CAM plants. Nature (London) 246:41–42

    CAS  Google Scholar 

  • Osmond CB, Ziegler H, Stichler W, Trimborn P (1975) Carbon isotope discrimination in alpine succulent plants supposed to be capable of Crassulacean acid metabolism (CAM). Oecologia 18:209–217

    Google Scholar 

  • Osmond CB, Bender MM, Burris RH (1976) Pathways of CO2 fixation in the CAM plant Kalanchoe daigremontiana III. Correlation with δ 13C value during growth and water stress. Aust J Plant Physiol 3:787–799

    CAS  Google Scholar 

  • Osmond CB, Nott DL, Firth PM (1979a) Carbon assimilation patterns and growth of the introduced CAM plant Opuntia inermis in Eastern Australia. Oecologia 40:331–350

    Google Scholar 

  • Osmond CB, Ludlow MM, Davis R, Cowan IR, Powles SB, Winter K (1979b) Stomatal responses to humidity in Opuntia inermis in relation to control of CO2 and H2O exchange patterns. Oecologia 41:65–76

    Google Scholar 

  • Osmond CB, Winter K, Powles SB (1980 a) Adaptive significance of carbon dioxide recycling during photosynthesis in water stressed plants. In: Turner NC, Kramer PJ (eds) Plant responses to water and high temperature stress. Wiley-Interscience, New York, pp 139–154

    Google Scholar 

  • Osmond CB, Björkman O, Anderson DJ (1980b) Physiological processes in plant ecology: toward a synthesis with Atriplex. Ecol Stud Vol 36. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Osmond CB, Valaane N, Haslam SM, Uotila P, Roksandic Z (1981) Comparisons of δ 13C values in leaves of aquatic macrophytes from different habitats in Britain and Finland: some implications for photosynthetic processes in aquatic plants. Oecologia 50:117–124.

    Google Scholar 

  • Park RB, Epstein S (1960) Carbon isotope fractionation during photosynthesis. Plant Physiol 36:133–138

    Google Scholar 

  • Patten DT, Dinger BE (1969) Carbon dioxide exchange patterns of cacti from different environments. Ecology 50:686–688

    CAS  Google Scholar 

  • Pearcy RW, Troughton JH (1975) C4 photosynthesis in tree form Euphorbia species from Hawaiian rainforest sites. Plant Physiol 55:1054–1056

    PubMed  CAS  Google Scholar 

  • Pearcy RW, Tumosa N, Williams K (1981) Relationships between growth, photosynthesis and competitive interactions for a C3 and C4 plant. Oecologia 48:371–376

    Google Scholar 

  • Peaslee DE, Moss DN (1968) Stomatal conductivities in K-deficient leaves of maize (Zea mays L.) Crop Sci 8:427–430

    Google Scholar 

  • Philpott J, Troughton JH (1974) Photosynthetic mechanisms and leaf anatomy of hot desert plants. Carnegie Inst Washington Yearb 73:790–793

    Google Scholar 

  • Picket-Heaps JD (1975) Green algae: structure, reproduction and evolution in selected genera. Sinauer Sunderland

    Google Scholar 

  • Powles SB, Critchley C (1980) Effect of light intensity during growth on photoinhibition of intact attached bean leaflets. Plant Physiol 65:1181–1187

    PubMed  CAS  Google Scholar 

  • Powles SB, Osmond CB (1978) Inhibition of the capacity and efficiency of photosynthesis in bean leaflets illuminated in a CO2-free atmosphere at low oxygen: a possible role for photorespiration. Austr J Plant Physiol 5:619–629

    CAS  Google Scholar 

  • Powles SB, Chapman KSR, Osmond CB (1980) Photoinhibition in intact attached leaves of C4 plants: dependence on CO2 and O2 partial pressures. Aust J Plant Physiol 7:737–747

    CAS  Google Scholar 

  • Prins HBA, Wolff RW (1974) Photorespiration in leaves of Vallisneria spiralis: the effect of oxygen on the carbon dioxide compensation point. Proc Kon Ned Akad Wet Ser C 77:239–245

    Google Scholar 

  • Quandt T, Gottschalk G, Ziegler H, Stichler W (1977) Isotope discrimination by photosynthetic bacteria. FEMS Microbiol Lett 1:125–128

    CAS  Google Scholar 

  • Radmer RJ, Kok B (1976) Photoreduction of O2 primes and replaces CO2 assimilation. Plant Physiol 39:336–340

    Google Scholar 

  • Raschke K (1975) Stomatal action. Annu Rev Plant Physiol 26:309–340

    CAS  Google Scholar 

  • Rathnam CKM, Chollet R (1980) Photosynthetic carbon metabolism in C4 plants and C3-C4 intermediate species. Prog Phytochem 6:1–48

    CAS  Google Scholar 

  • Rau G (1978) Carbon-13 depletion in a subalpine lake: carbon flow implications. Science 201:901–902

    PubMed  CAS  Google Scholar 

  • Raven JA (1970) Exogenous inorganic carbon sources in plant photosynthesis. Biol Rev 45:167–221

    CAS  Google Scholar 

  • Raven JA (1981) Nutritional strategies of submerged benthic plants: the acquisition of C, N, and P by rhizophytes and halophytes. New Phytol 88:1–30

    CAS  Google Scholar 

  • Raven JA, Glidewell SM (1978) C4 characteristics of photosynthesis in the C3 alga Hydrodictyon africanum. Plant Cell Environ 1:185–197

    Google Scholar 

  • Reed ML, Graham D (1977) Carbon dioxide and the regulation of photosynthesis: activities of photosynthetic enzymes and carbonate dehydratase (carbonic anhydrase) in Chlorella after growth or adaptation to different carbon dioxide concentrations. Aust J Plant Physiol 4:87–98

    CAS  Google Scholar 

  • Rhoades MM, Carvalho A (1944) The function and structure of the parenchyma sheath plastids of the maize leaf. Bull Torrey Bot Club 71:335–346

    Google Scholar 

  • Rundel PW (1980) The ecological distribution of C4 and C3 grasses in the Hawaiian Islands. Oecologia 45:354–359

    Google Scholar 

  • Rundel PW, Rundel JA, Ziegler H, Stichler W (1979) Carbon isotope ratios of central Mexican Crassulaceae in natural and greenhouse environments. Oecologia 38:45–50

    Google Scholar 

  • Ruttner F (1960) Von Kohlendioxyd und Kohlensäure im Süßwasser. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie Vol I. Springer, Berlin Göttingen Heidelberg, pp 62–69

    Google Scholar 

  • Ryle GJA, Hesketh JD (1969) Carbon dioxide uptake in nitrogen deficient plants. Crop Sci 9:451–454

    CAS  Google Scholar 

  • Schantz HL, Piemeisel LN (1927) The water requirement of plants at Akron, Colorado. J Agr Res (Washington DC) 34:1093–1189

    Google Scholar 

  • Schiegl WE (1970) Natural deuterium in biogenic materials. Influence of environment and geophysical applications. Ph D Thesis, Univ South Africa, Pretoria

    Google Scholar 

  • Schiegl WE, Vogel JC (1970) Deuterium content of organic matter. Earth Planet Sci Lett 7:307–313

    CAS  Google Scholar 

  • Schmidt H-L, Winkler FJ (1979) Einige Ursachen der Variationsbreite von δ 13C-Werten bei C3- und C4-Pflanzen. Ber Dtsch Bot Ges 92:185–191

    CAS  Google Scholar 

  • Schnarrenberger C, Fock H (1976) Interactions among organelles involved in photorespiration. In: Heber U, Stocking CR (eds) Transport in plants III. Encyclopedia of plant physiology new ser Vol III. Springer, Berlin Heidelberg New York, pp 185–234

    Google Scholar 

  • Schulze E-D, Ziegler H, Stichler W (1976) Environmental control of Crassulacean acid metabolism in Welwitschia mirabilis Hook. fil. in its natural range of distribution in the Namib desert. Oecologia 24:323–334

    Google Scholar 

  • Schulze E-D, Hall AE, Lange OL, Evenari M, Kappen L, Buschbom U (1980 a) Long-term effects of drought on wild and cultivated plants in the Negev Desert. I. Maximal rates of net photosynthesis. Oecologia 45:11–18

    Google Scholar 

  • Schulze E-D, Lange OL, Evenari M, Kappen L, Buschbom U (1980 b) Long-term effects of drought on wild and cultivated plants in the Negev Desert II. Diurnal patterns of net photosynthesis and daily carbon gain. Oecologia 45:19–25

    Google Scholar 

  • Simon H (1982) Tracer-Methoden in der Biologic In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysik, 2nd ed. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Simon H, Palm D (1966) Isotope effects in organic chemistry and biochemistry. Angew Chem 5:920–933

    CAS  Google Scholar 

  • Sims PL, Singh JS (1978a) The structure and function of ten Western North American grasslands. II. Intraseasonal dynamics in primary producer compartments. J Ecol 66:547–572

    Google Scholar 

  • Sims PL, Singh GH (1978 b) The structure and function often Western North American grasslands. III. Net primary production, turnover and efficiencies of energy capture and water use. J Ecol 66:573–579

    Google Scholar 

  • Sims PL, Singh JS, Lauenroth WK (1978) The structure and function of ten Western North American grasslands. I. Abiotic and vegetational characteristics. J Ecol 66:251–285

    Google Scholar 

  • Singh KD, Gopal B (1973) The effects of photoperiod and light intensity on the growth of some weeds of crop fields. In: Slatyer RO (ed) Plant response to climatic factors. UNESCO, Paris, pp 73–75

    Google Scholar 

  • Slack CR, Roughan RG, Bassett HCM (1974) Selective inhibition of mesophyll chloroplast development in some C4 pathway species by low night temperature. Planta 118:67–73

    Google Scholar 

  • Slatyer RO (1970) Comparative photosynthesis, growth and transpiration of two species of Atriplex. Planta 93:175–189

    Google Scholar 

  • Smith BN, Epstein S (1971) Two categories of 13C/12C ratios for higher plants. Plant Physiol 47:380–384

    PubMed  CAS  Google Scholar 

  • Smith FA, Walker NA (1980) Photosynthesis by aquatic plants: effects of unstirred layers in relation to assimilation of CO2 and HCO3 - and to carbon isotopic discrimination. New Phytol: 86:245–259

    CAS  Google Scholar 

  • Sødergaard M (1979) Light and dark respiration and the effect of the lacunal system on refixation of CO2 in submerged aquatic plants. Aquat Bot 6:269–283

    Google Scholar 

  • Spalding MH, Stumpf DK, Ku MSB, Burris RH, Edwards GE (1979) Crassulacean acid metabolism and diurnal variations of internal CO2 and O2 concentrations in Sedum praealtum D.C. Aust J Plant Physiol 6:557–567

    CAS  Google Scholar 

  • Spalding MH, Edwards GE, Ku MSB (1980) Quantum requirement for photosynthesis in Sedum praealtum during two phases of Crassulacean acid metabolism. Plant Physiol 66:463–465

    PubMed  CAS  Google Scholar 

  • Spence DHN (1976) Light and plant response in fresh water. In: Evans GC, Bainbridge R, Rackham O (eds) Light as an ecological factor Vol II. 16th Symp Br Ecol Soc. Blackwell, Oxford, pp 93–133

    Google Scholar 

  • Spence DHN (1981) Zonation of plants in freshwater lakes. Adv Ecol Res

    Google Scholar 

  • Steemann Nielsen E (1960) Uptake of carbon dioxide by the plant. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie. Vol I. Springer, Berlin Göttingen Heidelberg, pp 70–84

    Google Scholar 

  • Stewart KD, Mattox KR (1975) Comparative cytology, evolution and classification of the green algae with some consideration of the origin of other organisms with chlorophylls a and b. Bot Rev 41:104–135

    Google Scholar 

  • Stowe LG, Teeri JA (1978) The geographic distribution of C4 species of the dicotyledonae in relation to climate. Am Nat 112:609–623

    Google Scholar 

  • Stumm W, Morgan JJ (1970) Aquatic chemistry. Wiley-Interscience, New York

    Google Scholar 

  • Sutton BG, Ting IP, Troughton JH (1976) Seasonal effects on carbon isotope composition of cactus in a desert environment. Nature (London) 261:42–43

    CAS  Google Scholar 

  • Szarek SR, Ting IP (1977) The occurrence of Crassulacean acid metabolism among plants. Photosynthetica 11:330–342

    CAS  Google Scholar 

  • Szarek SR, Johnson HB, Ting IP (1973) Drought adaptation in Opuntia basilaris. Significance of recycling carbon through Crassulacean acid metabolism. Plant Physiol 52:539–541

    PubMed  CAS  Google Scholar 

  • Tailing JF (1976) The depletion of carbon dioxide from lake water by phytoplankton. J Ecol 64:79–121

    Google Scholar 

  • Taylor AO, Rowley JA (1971) Plants under climatic stress. I. Low temperature, high light effects on photosynthesis. Plant Physiol 47:713–718

    PubMed  CAS  Google Scholar 

  • Teeri JA, Stowe LG (1976) Climatic patterns and the distribution of C4 grasses in North America. Oecologia 23:1–12

    Google Scholar 

  • Teeri JA, Stowe LG, Murawski DA (1978) The climatology of two succulent plant families, Cactaceae and Crassulaceae. Can J Bot 56:1750–1758

    Google Scholar 

  • Terry N (1979) The use of mineral nutrient stress in the study of limiting factors in photosynthesis. In: Marcelle R, Clijsters H, Pucke M van (eds) Photosynthesis and plant development. Junk, The Hague, pp 151–160

    Google Scholar 

  • Thomas EA, Tregunna EB (1968) Bicarbonate ion assimilation in photosynthesis by Sargassum muticum. Can J Bot 46:411–415

    CAS  Google Scholar 

  • Tieszen LL, Senyimba MM, Imbamba SK, Troughton JH (1979) The distribution of C3 and C4 grasses and carbon isotope discrimination along an altitudinal and moisture gradient in Kenya. Oecologia 37:337–350

    Google Scholar 

  • Trebst A, Avron M (1978) (eds) Photosynthesis. I. Photosynthetic electron transport and photophosphorylation. Encyclopedia of plant physiology new ser Vol V. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Troughton JH (1979) δ 13C as an indicator of carboxylation reactions. In: Gibbs M, Latzko E (eds) Photosynthesis II. Encyclopedia of plant physiology new ser Vol 6. Springer, Berlin Heidelberg New York, pp 140–147

    Google Scholar 

  • Troughton JH, Mooney HA, Berry JA, Verity D (1977) Variable carbon isotope ratios of Dudleya species growing in natural habitats. Oecologia 30:307–312

    Google Scholar 

  • Updike J (1968) Couples. Fawcett, Greenwich

    Google Scholar 

  • Van TK, Haller WT, Bowes G (1976) Comparison of the photosynthetic characteristics of three submerged aquatic plants. Plant Physiol 58:761–768

    PubMed  CAS  Google Scholar 

  • Vogel JC (1980) Fractionation of the carbon isotopes during photosynthesis. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Vogel JC, Fuls A, Ellis RP (1978) The geographical distribution of Kranz grasses in South Africa. S Afr J Sci 74:209–215

    Google Scholar 

  • Volkens G (1887) Die Flora der ägyptisch-arabischen Wüste. Sitzungsber Preuss Acad Wiss Berl Phys Math Kl

    Google Scholar 

  • Wagner J, Larcher W (1981) Dependence of CO2 gas exchange and acid metabolism of the alpine CAM plant Sempervivum montanum on temperature and light. Oecologia 50:88–93

    Google Scholar 

  • Weber JN, Woodhead P (1970) Carbon and oxygen isotope fractionation in the skeletal carbonate of reef building corals. Chem Geol 6:93–123

    CAS  Google Scholar 

  • Weidner M, Küppers U (1973) Phosphoenolpyruvat-Carboxykinase und Ribulose-1,5-Diphosphat-Carboxylase von Laminaria hyperborea (Gunn.) Fosl: Das Verteilungsmuster der Enzymaktivitäten im Thallus. Planta 114:365–372

    CAS  Google Scholar 

  • Westlake DF (1967) Some effects of low velocity currents on the metabolism of aquatic macrophytes. J Exp Bot 18:187–205

    Google Scholar 

  • Willenbrink J, Rangoni-Kübbeler M, Tersky B (1975) Frond development and CO2 fixation in Laminaria hyperborea. Planta 125:161–170

    CAS  Google Scholar 

  • Williams GJ III (1974) Photosynthetic adaptation to temperature in C3 and C4 grasses. A possible ecological role in the short-grass prairie. Plant Physiol 54:709–711

    PubMed  CAS  Google Scholar 

  • Willis JC (1973) A dictionary of the flowering plants and ferns, 8th edn. Univ Press, Cambridge

    Google Scholar 

  • Winter K (1978) Short-term fixation of 14-Carbon by the submerged aquatic angiosperm Potamogeton pectinatus. J Exp Bot 29:1169–1172

    CAS  Google Scholar 

  • Winter K (1979a) δ 13C values of some succulent plants from Madagascar. Oecologia 40:104–112

    Google Scholar 

  • Winter K (1979b) Photosynthetic and water relationships of higher plants in saline environments. In: Jefferies RL, Davy AJ (eds) Ecological processes in coastal environments. Blackwell, Oxford, pp 297–320

    Google Scholar 

  • Winter K (1980) Carbon dioxide and water vapor exchange in the Crassulacean acid metabolism plant Kalanchoe pinnata during a prolonged light period. Plant Physiol 66:917–921

    PubMed  CAS  Google Scholar 

  • Winter K (1981) C4 plants of high biomass in arid regions of Asia — occurrence of C4 photosynthesis in Chenopodiaceae and Polygonaceae from the Middle East and USSR. Oecologia 48:100–106

    Google Scholar 

  • Winter K, Lüttge U (1976) Balance between C3 and CAM pathway of photosynthesis. In: Lange OL, Kappen L, Schulze E-D (eds) Water and plant life: problems and modern approaches. Ecol Stud Vol 19. Springer, Berlin Heidelberg New York, pp 323–334

    Google Scholar 

  • Winter K, Troughton JH (1978) Photosynthetic pathways in plants of coastal and inland habitats of Israel and the Sinai. Flora 167:1–34

    CAS  Google Scholar 

  • Winter K, Willert von DJ (1972) NaCl-induzierter CAM bei Mesembryanthemum crystallinum. Z Pflanzenphysiol 67:166–170

    CAS  Google Scholar 

  • Winter K, Kramer D, Throughton JH, Card KA, Fischer K (1977) C4 pathway of photosynthesis in a member of the Polygonaceae: Calligonum persicum (Boiss. & Buhse) Boiss. Z Pflanzenphysiol 81:341–346

    CAS  Google Scholar 

  • Winter K, Lüttge U, Winter E, Troughton JH (1978) Seasonal shift from C3 photosynthesis to Crassulacean acid metabolism in Mesembryanthemum crystallinum growing in its natural environment. Oecologia 34:225–237

    Google Scholar 

  • Wong SC, Cowan IR, Farquhar GD (1979) Stomatal conductance correlates with photosynthetic capacity. Nature (London) 282:424–426

    Google Scholar 

  • Wong WW, Benedict CR, Kohel RJ (1979) Enzymic fractionation of the stable carbon isotopes of carbon dioxide by ribulose-1,5-bisphosphate carboxylase. Plant Physiol 63:852–856

    PubMed  CAS  Google Scholar 

  • Yamaguchi T, Ikawa T, Nisizawa K (1969) Pathway of mannitol formation during photosynthesis in brown algae. Plant Cell Physiol 10:425–440

    CAS  Google Scholar 

  • Ziegler H (1979) Diskriminierung von Kohlenstoff- und Wasserstoffisotopen: Zusammenhänge mit dem Photosynthesemechanismus und den Standortbedingungen. Ber Dtsch Bot Ges 92:169–184

    CAS  Google Scholar 

  • Ziegler H, Osmond CB, Stichler W, Trimborn P (1976) Hydrogen isotope discrimination in higher plants: correlation with photosynthetic pathway and environment. Planta 128:85–92

    CAS  Google Scholar 

  • Ziegler H, Batanouny KH, Sankhla N, Vyas OP, Stichler W (1981) The photosynthetic pathway types of some desert plants from India, Saudi Arabia, Egypt and Iraq. Oecologia 48:93–99

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Osmond, C.B., Winter, K., Ziegler, H. (1982). Functional Significance of Different Pathways of CO2 Fixation in Photosynthesis. In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (eds) Physiological Plant Ecology II. Encyclopedia of Plant Physiology, vol 12 / B. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68150-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68150-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68152-3

  • Online ISBN: 978-3-642-68150-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics