Skip to main content

Sugar Alcohols

  • Chapter
Plant Carbohydrates I

Part of the book series: Encyclopedia of Plant Physiology ((921,volume 13 / A))

Abstract

The sugar alcohols are, as their name implies, those compounds obtained when the aldo or keto group of a sugar is reduced to the corresponding hydroxy group. As such, they are alcohols. Sugars are, of course, themselves polyhydroxy compounds, and so the corresponding sugar alcohols merely have one more alcohol grouping — hence alternative names for the group are polyols, polyalcohols, or polyhydric alcohols. Actually the term “polyol” could properly cover a much larger group containing any compound with three or more hydroxy groups, but common usage normally restricts the term to those compounds closely related to sugars and sugar derivatives. Even limited thus, the polyols form a broad group, containing both the straight-chain or acyclic polyols (glycitols), which are our sugar alcohols, and the cyclic polyols (cyclitols) such as inositol, covered in Chapter 6, this Volume. Chemically, physically, and biologically the sugar alcohols closely resemble the sugars to the extent that some are even sweet to the taste and one (xylitol) is being tested as a food sweetener. In the plant they are almost always closely related, in their biogenesis and metabolism, to the companion sugar (usually the ketose): in many organisms, particularly the fungi, they replace the sugars in many of their functions. It has therefore been convenient sometimes to regard them as special kinds of sugar in their metabolic roles, and to some degree that is the view I will take here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad I, Larher F, Stewart GR (1979) Sorbitol, a compatible osmotic solute in Plantago maritima. New Phytol 82: 671–678

    CAS  Google Scholar 

  • Aitken WB, Niederpruem DJ (1972) Isotopic studies of carbohydrate metabolism during basidiospore germination in Schizophyllum commune. I. Uptake of radioactive glucose and sugar alcohols. Arch Mikrobiol 82: 173–183

    PubMed  CAS  Google Scholar 

  • Anthonsen T, Hagen S, Kazi MA, Shah SW, Tagar S (1976) 2-C-Methyl-erythritol, a new branched alditol from Convolvulus glomeratus. Acta Chem Scand B 30: 91–93

    Google Scholar 

  • Ash ASF, Reynolds TM (1954) Ketose oligosaccharides in the apricot fruit. Nature (London) 174: 602–603

    CAS  Google Scholar 

  • Barker SA, (1955) Acyclic sugar alcohols. In: Paech K, Tracey MV (eds) Modern methods of plant analysis, vol II. Springer, Berlin Göttingen Heidelberg, pp 55–63

    Google Scholar 

  • Barnett JA (1976) The utilization of sugars by yeasts. Adv Carbohydr Chem Biochem 32: 125–234

    PubMed  CAS  Google Scholar 

  • Bidwell RGS (1957) Photosynthesis and metabolism of marine algae. I. Photosynthesis of two marine flagellates compared with Chlorella. Can J Bot 35: 945–950

    CAS  Google Scholar 

  • Bieleski RL (1963) The problem of halting enzyme action when extracting plant tissues. Anal Biochem 9: 431–442

    Google Scholar 

  • Bieleski RL (1969) Accumulation and translocation of sorbitol in apple phloem. Aust J Biol Sci 22: 611–620

    CAS  Google Scholar 

  • Bieleski RL (1977) Accumulation of sorbitol and glucose by leaf slices of Rosaceae. Aust J Plant Physiol 4: 11–24

    CAS  Google Scholar 

  • Bieleski RL, Redgwell RJ (1977) Synthesis of sorbitol in apricot leaves. Aust J Plant Physiol 4: 1–10

    CAS  Google Scholar 

  • Bieleski RL, Redgwell RJ (1980) Sorbitol metabolism in nectaries from flowers of Rosaceae. Aust J Plant Physiol 7: 15–25

    CAS  Google Scholar 

  • Bliss CA, Hamon NW, Lukaszewski TP (1972) Biosynthesis of dulcitol in Euonymus japonica. Phytochemistry 11: 1705–1711

    CAS  Google Scholar 

  • Blumenthal HJ (1976) Reserve carbohydrates in fungi. In: Smith JE, Berry DR (eds) The filamentous fungi, vol II. Edward Arnold, London, pp 292–307

    Google Scholar 

  • Boonsaeng V, Sullivan PA, Shepherd MG (1976) Mannitol production in fungi during glucose catabolism. Can J Microbiol 22: 808–816

    PubMed  CAS  Google Scholar 

  • Bourne EJ (1958) The polyhydric alcohols. Acyclic polyhydric alcohols. In: Ruhland W (ed) Encyclopedia of plant physiology, vol VI. Springer, Berlin Göttingen Heidelberg, pp 345–362

    Google Scholar 

  • Breen PJ, Muraoka T (1974) Effect of leaves on carbohydrate content and movement of 14C-assimilate in plum cuttings. J Am Soc Hortic Sci 99: 326–332

    CAS  Google Scholar 

  • Brimacombe JS, Webber JM (1972) Alditols and derivatives. In: Pigman W, Horton D (eds) The carbohydrates. Chemistry and biochemistry, 2nd edn. Academic Press, London New York, pp 479–518

    Google Scholar 

  • Brown AD (1974) Microbial water relations: features of the intracellular composition of sugar-tolerant yeasts. J Bacteriol 118: 769–777

    PubMed  CAS  Google Scholar 

  • Brown LM, Hellebust JA (1978) Sorbitol and proline as intracellular osmotic solutes in the green alga Stichococcus bacillaris. Can J Bot 56: 676–679

    CAS  Google Scholar 

  • Buchloh G, Neubeller J (1969) Zur qualitativen und quantitativen Bestimmung von Zuckern und Zuckeralkoholen in einigen Obstfrüchten mittels Gaschromatographie. Erwerbsobstbau 11: 22–27

    Google Scholar 

  • Chong C (1971) Study of the seasonal and daily distribution of sorbitol and related carbohydrates within apple seedlings by analysis of selected tissues and organs. Can J Plant Sci 51: 519–525

    CAS  Google Scholar 

  • Chong C, Taper CD (1974) Malus tissue cultures. II. Sorbitol metabolism and carbon nutrition. Can J Bot 52: 2361–2364

    CAS  Google Scholar 

  • Chong C, Chan WW, Taper CD (1972) Sorbitol and carbohydrate content in apple skin. J Hortic Sci 47: 209–213

    CAS  Google Scholar 

  • Corbett K, Dickerson AG, Mantle PG (1975) Metabolism of the germinating Sclerotium of Claviceps purpurea. J Gen Microbiol 90: 55–68

    PubMed  CAS  Google Scholar 

  • Cotter DA, Niederpruem DJ (1971) Nutritional and temporal control of arabitol and mannitol accumulation in Geotrichum. Arch Mikrobiol 76: 65–73

    CAS  Google Scholar 

  • Craigie JS, McLachlan J, Majak W, Ackman RG, Tocher CS (1966) Photosynthesis in algae. II. Green algae with special reference to Dunaliella spp and Tetraselmis spp. Can J Bot 44: 1247–1254

    Google Scholar 

  • Craigie JS, McLachlan J, Ackman RG, Tocher CS (1967) Photosynthesis in algae. Ill Distribution of soluble carbohydrates and dimethyl-β-propiothetin in marine unicellular Chlorophyceae and Prasinophyceae. Can J Bot 45: 1327–1334

    CAS  Google Scholar 

  • Desai BM, Modi W, Shah VK (1969) Studies on polyol metabolism in Aspergillus niger. III. Purification and properties of sorbitol dehydrogenase. Arch Mikrobiol 67: 16–20

    PubMed  CAS  Google Scholar 

  • Evans LV, Callow JA, Callow ME (1973) Structural and physiological studies on the parasitic red alga Holmsella. New Phytol 72: 393–402

    Google Scholar 

  • Feige GB (1973) Untersuchungen zur Ökologie und Physiologie der marinen Blaualgenflechte Lichina pygmaea Ag. II. Die Reversibilität der Osmoregulation. Z Pflanzenphysiol 68: 415–421

    Google Scholar 

  • Fidler JC, North CJ (1970) Sorbitol in stored apples. J Hortic Sci 45: 197–204

    CAS  Google Scholar 

  • Garegg PJ, Lindberg B, Nilsson K, Swahn C-G (1973) 1-O-β-D-Galactopyranosyl-D-ribitol from Xanthoria parietina. Acta Chem Scand 27: 1595–1600

    CAS  Google Scholar 

  • Hackman RH, Trikojus VM (1952) The composition of the honeydew excreted by Australian coccids of the genus Ceroplastes. Biochem J 51: 653–656

    PubMed  CAS  Google Scholar 

  • Hammond JBW, Nichols R (1976) Carbohydrate metabolism in Agaricus bisporus (Lange) Sing.: changes in soluble carbohydrates during growth of mycelium and sporophore. J Gen Microbiol 93: 309–320

    PubMed  CAS  Google Scholar 

  • Hankes LV, Politzer WM, Touster O, Anderson L (1969) myo-Inositol catabolism in human pentosurics: the predominant role of the glucuronate - xylulose - pentose phosphate pathway. Ann NY Acad Sci 165: 564–576

    PubMed  CAS  Google Scholar 

  • Hansen P, Grauslund J (1978) Levels of sorbitol in bleeding sap and in xylem sap in relation to leaf mass and assimilate demand in apple trees. Physiol Plant 42: 129–133

    CAS  Google Scholar 

  • Haškovec C, Kotyk A (1973) Transport systems for acyclic polyols and monosaccharides in Torulopsis Candida. Folia Microbiol (Prague) 18: 118–124

    Google Scholar 

  • Hattori K, Suzuki T (1974) Production of erythritol by n-alkane grown yeasts. Agric Biol Chem 38: 581–586

    CAS  Google Scholar 

  • Hellebust JA (1976) Osmoregulation. Annu Rev Plant Physiol 27: 485–505

    CAS  Google Scholar 

  • Hill DJ, Ahmadjian V (1972) Relationship between carbohydrate movement and the symbiosis in lichens with green algae. Planta 103: 267–277

    CAS  Google Scholar 

  • Hirai M (1979) Sorbitol-6-phosphate dehydrogenase from loquat fruit. Plant Physiol 63: 715–717

    PubMed  CAS  Google Scholar 

  • Hirai M (1981) Purification and characterization of sorbitol-6-phosphate dehydrogenase from loquat leaves. Plant Physiol 67: 221–224

    PubMed  CAS  Google Scholar 

  • Holligan PM, Drew EA (1971) Routine analysis by gas-liquid chromatography of soluble carbohydrates in extracts of plant tissues. II. Quantitative analysis of standard carbohydrates, and the separation and estimation of soluble sugars and polyols from a variety of plant tissues. New Phytol 70: 271–297

    CAS  Google Scholar 

  • Holligan PM, Jennings DH (1972) Carbohydrate metabolism in the fungus Dendryphiella salina. II. The influence of different carbon and nitrogen sources on the accumulation of mannitol and arabitol. New Phytol 71: 583–594

    Google Scholar 

  • Holligan PM, Chen C, Lewis DH (1973) Changes in the carbohydrate composition of leaves of Tussilago farfara during infection by Puccinia poarum. New Phytol 72: 947–955

    CAS  Google Scholar 

  • Hough L, Stacey BE (1966) Biosynthesis and metabolism of allitol and D-allulose in Itea plants: incorporation of 14CO2. Phytochemistry 5: 215–222

    CAS  Google Scholar 

  • Ikawa T, Watanabe T, Nisizawa K (1972) Enzymes involved in the last steps of the biosynthesis of mannitol in brown algae. Plant Cell Physiol 13: 1017–1029

    CAS  Google Scholar 

  • Jennings DH, Austin S (1973) The stimulatory effect of the non-metabolized sugar 3-O- methyl glucose on the conversion of mannitol and arabitol to polysaccharide and other insoluble compounds in the fungus Dendryphiella salina. J Gen Microbiol 75: 287–294

    CAS  Google Scholar 

  • Kao KN, Michayluk MR (1975) Nutritional requirements for growth of Vicia hajastana cells and protoplasts at a very low population density in liquid medium. Planta 126: 105–110

    CAS  Google Scholar 

  • Kawamata S (1977) Studies on sugar component of fruits by gas-liquid chromatography. Bull Tokyo Agric Exp Sta 10: 53–67

    Google Scholar 

  • Kirst KO (1975) Beziehungen zwischen Mannitkonzentration und osmotischer Belastung bei der Brackwasseralge Platymonas subcordiformis Hazen. Z Pflanzenphysiol 76: 316–325

    CAS  Google Scholar 

  • Kocourek J, Tichá M, Koštir J (1964) Formation of ribulose in plants fed Larabitol. Arch Biochem Biophys 108: 349–351

    PubMed  CAS  Google Scholar 

  • Kremer BP (1973 a) Isolation of mannitol from Desmarestia viridis. Phytochemistry 12:609–610

    CAS  Google Scholar 

  • Kremer BP (1973 b) Untersuchungen zur Physiologie von Volemit in der marinen Braunalge Pelvetia canaliculata. Mar Biol 22:31–35

    CAS  Google Scholar 

  • Kremer BP (1975) Separation of isomeric pentitols and hexitols by paper and thin-layer chromatography. J Chromatogr 110: 171–173

    CAS  Google Scholar 

  • Kremer BP (1976a) 14C-Assimilate pattern and kinetics of photosynthetic 14C02-assimilation of the marine red alga Bostrychia scorpioides. Planta 129:63—67

    CAS  Google Scholar 

  • Kremer BP (1976 b) Distribution and biochemistry of alditols in the genus Pelvetia (Phaeophyceae, Fucales). Br Phycol J 11: 239–243

    Google Scholar 

  • Kremer BP (1976c) Mannitol in the Rhodophyceae - a reappraisal. Phytochemistry 15: 1135–1138

    CAS  Google Scholar 

  • Kremer BP, Willenbrink J (1972) C02-Fixierung und Stofftransport in benthischen marinen Algen. I. Zur Kinetik der 14CO2-Assimilation bei Laminaria saccharina. Planta 103: 55–64

    CAS  Google Scholar 

  • LeFebvre MJ, Gonzalez NS, Pontis HG (1964) Anion-exchange chromatography of sugar phosphates with triethylammonium borate. J Chromatogr 15: 495–500

    PubMed  CAS  Google Scholar 

  • Lewis DH (1971) Chemotaxonomic aspects of the distribution of acyclic sugar alcohols in leafy liverworts. I. Chemical evidence for the taxonomic position of Plagiochila carringtonii (Balfour) Grolle. Trans Br Bryol Soc 6: 108–113

    Google Scholar 

  • Lewis DH, Smith DC (1967) Sugar alcohols (polyols) in fungi and green plants. I. Distribution, physiology and metabolism. New Phytol 66: 143–184

    CAS  Google Scholar 

  • Lindberg B, Paju J (1954) Low-molecular carbohydrates in algae. IV. Investigation of Pelvetia canaliculata. Acta Chem Scand 8: 817–820

    CAS  Google Scholar 

  • Lindberg B, Misiorny A, Wachtmeister CA (1953) Studies on the chemistry of lichens. IV. Investigation of the low-molecular carbohydrate constituents of different lichens. Acta Chem Scand 7: 591–595

    CAS  Google Scholar 

  • Lindberg B, Silvander B-G, Wachtmeister CA (1964) Studies on the chemistry of lichens. Mannitol glycosides in Peltigera species. Acta Chem Scand 18: 213–216

    CAS  Google Scholar 

  • Lönngren J, Svensson S (1974) Mass spectrometry in structural analysis of natural carbohydrates. Adv Carbohydr Chem Biochem 29: 41–106

    Google Scholar 

  • Lowe DA, Jennings DH (1975) Carbohydrate metabolism in the fungus Dendryphiella salina. V. The pattern of label in arabitol and polysaccharide after growth in the presence of specifically labelled carbon sources. New Phytol 74: 67–79

    CAS  Google Scholar 

  • MacLean DJ, Scott KJ (1976) Identification of glucitol (sorbitol) and ribitol in a rust fungus, Puccinia graminis f. sp. tritici. J Gen Microbiol 97: 83–89

    PubMed  CAS  Google Scholar 

  • Maxwell WA, Spoerl E (1971) Mannitol uptake by Saccharomyces cerevisiae. J Bacteriol 105: 753–758

    Google Scholar 

  • Mitchell DT, Fung AK, Lewis DH (1978) Changes in the ethanol-soluble carbohydrate composition and acid invertase in infected first leaf tissues susceptible to crown rust of oat and wheat stem rust. New Phytol 80: 381–392

    CAS  Google Scholar 

  • Mower RL, Gray GR, Ballou CE (1973) Sugars from Sphacelia sorghi honeydew. Carbohydr Res 27: 119–134

    PubMed  CAS  Google Scholar 

  • Munda IM, Kremer BP (1977) Chemical composition and physiological properties of fucoids under conditions of reduced salinity. Mar Biol 42: 9–15

    CAS  Google Scholar 

  • Muscatine L, Boyle JE, Smith DC (1974) Symbiosis of the acoel flatworm Convoluta roscoffensis with the alga Platymonas convolutae. Proc R Soc London Ser B 187: 221–234

    CAS  Google Scholar 

  • Negm FB, Loescher WH (1979) Detection and characterization of sorbitol dehydrogenase from apple callus tissue. Plant Physiol 64: 69–73

    PubMed  CAS  Google Scholar 

  • Negm FB, Loescher WH (1981) Characterization and partial purification of aldose-6- phosphate reductase (alditol-6-phosphate: NADP 1-oxidoreductase) from apple leaves. Plant Physiol 67: 139–142

    PubMed  CAS  Google Scholar 

  • Onishi H, Perry MB (1972) The production of D-glycero-D-manno-heptitol by Torulopsis versatilis. Can J Microbiol 18: 925–927

    PubMed  CAS  Google Scholar 

  • Percival E, McDowell RH (1967) Chemistry and enzymology of marine algal polysaccharides. Academic Press, London New York

    Google Scholar 

  • Plouvier V (1963) Distribution of aliphatic polyols and cyclitols. In: Swain T (ed) Chemical plant taxonomy. Academic Press, London New York, pp 313–336

    Google Scholar 

  • Plouvier V (1971) Sur la recherche du scyllitol, du myoinositol et du dulcitol dans quelques groupe botaniques. C R Acad Sci Ser D 272: 141–144

    CAS  Google Scholar 

  • Raese JT, Williams MW, Billingsley HD (1978) Cold hardiness, sorbitol, and sugar levels of apple shoots as influenced by controlled temperature and season. J Am Soc Hortic Sci 103: 796–801

    CAS  Google Scholar 

  • Redgwell RJ (1980) Fractionation of plant extracts using ion exchange Sephadex. Anal Biochem 107: 44–50

    PubMed  CAS  Google Scholar 

  • Redgwell RJ, Bieleski RL (1978) Sorbitol-1-phosphate and sorbitol-6-phosphate in apricot leaves. Phyto chemistry 17: 407–109

    CAS  Google Scholar 

  • Reid MS, Bieleski RL (1974) Sugar changes during fruit ripening - whither sorbitol? In: Bieleski RL, Ferguson AR, Cresswell MM (eds) Mechanisms of regulation of plant growth. Bulletin 12. Royal Society of New Zealand, Wellington, pp 823–830

    Google Scholar 

  • Richtmyer NK (1970) The isolation of volemitol and other polyhydric alcohols from avocado seeds. Carbohydr Res 12: 135–138

    CAS  Google Scholar 

  • Rosenfield C-L, Fann C, Loewus FA (1978) Metabolic studies on intermediates in the myo-inositol oxidation pathway in Lilium longiflorum pollen. Plant Physiol 61: 89–95

    PubMed  CAS  Google Scholar 

  • Sakai A (1966) Seasonal variations in the amounts of polyhydric alcohol and sugar in fruit trees. J Hortic Sci 41: 207–213

    CAS  Google Scholar 

  • Salewski L, Miersch J, Reinbothe H (1976) Zur Polyolbildung aus Glucose in der flavinoge- nen Hefe Candida guilliermondii ( Cast.) Lang, et G. Biochem Physiol Pflanz 170: 501–508

    CAS  Google Scholar 

  • Schmitz K, Srivastava LM (1975) On the fine structure of sieve tubes and the physiology of assimilate transport in Alaria marginata. Can J Bot 53: 861–876

    Google Scholar 

  • Schobert B (1977) Is there an osmotic regulatory mechanism in algae and higher plants? J Theor Biol 68: 17–26

    PubMed  CAS  Google Scholar 

  • Smith D, Muscatine L, Lewis D (1969) Carbohydrate movement from autotrophs to heterotrophs in parasitic and mutualistic symbiosis. Biol Rev 44: 17–90

    PubMed  CAS  Google Scholar 

  • Smith DC (1974) Transport from symbiotic algae and symbiotic chloroplasts to host cells. Symp Soc Exp Biol 28: 485–520

    PubMed  CAS  Google Scholar 

  • Smith SE, Smith FA (1973) Uptake of glucose, trehalose and mannitol by leaf slices of the orchid Bletilla hyacinthina. New Phytol 72: 957–964

    CAS  Google Scholar 

  • Spencer N (1967) Ion exchange chromatography of polyols. J Chromatogr 30: 566–571

    PubMed  CAS  Google Scholar 

  • Stacey BE (1974) Plant polyols. In: Pridham JB (ed) Plant carbohydrate biochemistry. Annu Proc Phytochem Soc, vol X. Academic Press, London New York, pp 47–59

    Google Scholar 

  • Staněk J, Černý M, Kocourek J, Pacák J (1963) The monosaccharides. Academic Press, London New York

    Google Scholar 

  • Steele SD (1972) Sugars and sugar alcohols in relation to life cycle phases of Geotrichum candidum. Trans Br Mycol Soc 59:502–506

    CAS  Google Scholar 

  • Stoll U (1968) Sorbit- und Zuckergehalte in Apfel- und Birnensorten. Erwerbsobstbau 10: 27–29

    Google Scholar 

  • Subramanian SS, Nair AGR (1971) Distribution of mannitol and flavonols in some Rubiaceous plants. Phytochemistry 10: 2125–2127

    CAS  Google Scholar 

  • Suleiman AAA, Bacon J, Christie A, Lewis DH (1979) The carbohydrates of the leafy liverwort, Plagiochila asplenioides ( L.) Dum. New Phytol 82: 439–448

    CAS  Google Scholar 

  • Suzuki H (1974) Starch-type polysaccharide and mannitol in Platymonas. Phytochemistry 13: 1159–1160

    CAS  Google Scholar 

  • Suzuki T, Onishi H (1975) Purification and properties of polyol: NADP oxidoreductase from Pichia quercuum. Agric Biol Chem 39: 2389–2397

    CAS  Google Scholar 

  • Touster O (1974) The metabolism of polyols. In: Sipple HL, McNutt KW (eds) Sugars in nutrition. Academic Press, London New York, pp 229–239

    Google Scholar 

  • Touster O, Shaw DRD (1962) Biochemistry of the acyclic polyols. Physiol Rev 42: 181–225

    PubMed  CAS  Google Scholar 

  • Trip P, Nelson CD, Krotkov G (1965) Selective and preferential translocation of 14C-labeled sugars in white ash and lilac. Plant Physiol 40: 740–747

    PubMed  CAS  Google Scholar 

  • Ueng ST-H, McGuinness ET (1977) D-Mannitol dehydrogenase from Absidia glauca. Steady- state kinetic properties and the inhibitory role of mannitol 1-phosphate. Biochemistry 16: 107–111

    PubMed  CAS  Google Scholar 

  • Ueng ST-H, Hartanowicz P, Lewandoski C, Keller J, Holick M, McGuinness ET (1976) D-Mannitol dehydrogenase from Absidia glauca. Purification, metabolic role, and subunit interactions. Biochemistry 15: 1743–1749

    PubMed  CAS  Google Scholar 

  • Wallaart RAM (1980) Distribution of sorbitol in Rosaceae. Phytochemistry 19: 2603–2610

    CAS  Google Scholar 

  • Wang S-YC, le Tourneau D (1972) Mannitol biosynthesis in Sclerotinia sclerotiorum. Arch Mikrobiol 81: 91–99

    PubMed  CAS  Google Scholar 

  • Webb KL, Burley JWA (1962) Sorbitol translocation in apple. Science 137: 766

    PubMed  CAS  Google Scholar 

  • Weigel H (1963) Paper electrophoresis of carbohydrates. Adv Carbohydr Chem 18: 61–97

    PubMed  CAS  Google Scholar 

  • Whetter JM, Taper CD (1966) Occurrence of sorbitol (D-glucitol) and certain related sugars in germinating seeds and developing seedlings of Malus. Can J Bot 44: 51–55

    CAS  Google Scholar 

  • Whistler RL, Wolfrom ML (1962) Methods in carbohydrate chemistry. Vol. I. Analysis and preparation of sugars. Academic Press, London New York

    Google Scholar 

  • Williams MW, Raese JT (1974) Sorbitol in tracheal sap of apples as related to temperature. Physiol Plant 30: 49–52

    CAS  Google Scholar 

  • Yamaguchi T, Ikawa T, Nisizawa K (1969) Pathway of mannitol formation during photosynthesis in brown algae. Plant Cell Physiol 10:425–440 Yamaki S (1980) Sorbitol oxidase converting sorbitol to glucose in apple leaf. Plant Cell Physiol 21: 591–599

    CAS  Google Scholar 

  • Yamaki S (1981) Subcellular localization of sorbitol-6-phosphate dehydrogenase in protoplasts from apple cotyledons. Plant Cell Physiol 22: 359–367

    CAS  Google Scholar 

  • Yamaki S, Kajiura I, Omura M, Matsuda K (1977) Watercore in Japanese pear. III. Changes in the activities of some enzymes relating to the degradation of cell walls and the accumulation of sugar. Sci Hortic 6: 45–53

    CAS  Google Scholar 

  • Zimmermann MH, Ziegler H (1975) List of sugars and sugar alcohols in sieve-tube exudates. In: Pirson A, Zimmermann MH (eds) Encyclopaedia of plant physiology. New Series, vol I. Springer, Berlin Heidelberg New York, pp 480–503

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bieleski, R.L. (1982). Sugar Alcohols. In: Loewus, F.A., Tanner, W. (eds) Plant Carbohydrates I. Encyclopedia of Plant Physiology, vol 13 / A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68275-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68275-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68277-3

  • Online ISBN: 978-3-642-68275-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics