Skip to main content

Oligosaccharides Based on Sucrose (Sucrosyl Oligosaccharides)

  • Chapter
Plant Carbohydrates I

Part of the book series: Encyclopedia of Plant Physiology ((921,volume 13 / A))

Abstract

Sucrosyl oligosaccharides represent the major portion of the so-called primary oligosaccharides, recently defined (Kandler and Hopf 1980a) as those oligosaccharides which are synthesized in vivo by the action of a glycosyl transferase from a mono- or oligosaccharide and a glucosyl donor. They occur freely in significant amounts in plants and are of metabolic relevance, whereas the so-called secondary oligosaccharides arise by the hydrolysis of higher oligosaccharides, polysaccharides, or heterosides and are usually not accumulated in the plant tissue. In all known cases the biosynthesis of the sucrosyl oligosaccharides is brought about by the transfer of a galactopyranosyl, glucopyranosyl, or fructofuranosyl residue to either the glucosyl or fructosyl moiety of sucrose. A survey of the mode of attachment of these residues to sucrose is shown in Fig. 1. The degree of polymerization (DP) normally ranges from three to nine. A set of homologous oligosaccharides is usually designated a series or family, e.g., the raffinose series (family) etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albon N, Bell DJ, Blanchard PH, Gross D, Rundell JT (1953) Kestose: a trisaccharide formed from sucrose by yeast invertase. J Chem Soc 24–27

    Google Scholar 

  • Alden J, Hermann RK (1971) Aspects of the cold hardiness mechanism in plants. Bot Rev 37: 37–142

    Article  CAS  Google Scholar 

  • Archambault A, Courtois JE, Wickstrom A, Le Dizet P.( 1956 a) Recherches sur les galactosides du Lychnis dioica. I. Isolement du cinq galactosides nouveaux. Bull Soc Chim Biol 38: 1121–1131

    PubMed  CAS  Google Scholar 

  • Archambault A, Courtois JE, Wickstrom A, Le Dizet P ( 1956 b) Recherches sur les galactosides du Lychnis dioica II. Etude de la structure du tetraholoside lychnose. Bull Soc Chim Biol 38: 1133–1141

    PubMed  CAS  Google Scholar 

  • Aronsson A, Ingestad T, Lööf LG (1976) Carbohydrate metabolism and frost hardiness in pine and spruce seedlings grown at different photoperiods and thermoperiods. Physiol Plant 36: 127–132

    Article  CAS  Google Scholar 

  • Assarson A, Theander O (1958) The constituents of conifer needles. Acta Chem Scand 12: 1319–1322

    Article  Google Scholar 

  • Bacon JSD (1960) The oligofructosides. Bull Soc Chim Biol 42: 113–121

    Google Scholar 

  • Bacon JSD, Bell DJ (1953) A new trisaccharide produced from sucrose by mold invertase. J Chem Soc 2528–2530

    Google Scholar 

  • Beck E (1969) Isolierung und Identifizierung von Clusianose, einem 1-O-α-D-Galactopyrano-syl-Hamamelit. Z Pflanzenphysiol 61: 360–366

    CAS  Google Scholar 

  • Benson AA, Bassham JA, Calvin M, Goodale TC, Haas VA, Stepka W (1950) The path of carbon in photosynthesis. V. Paper chromatography and radioautography of the products. J Am Chem Soc 72: 1710–1718

    Article  CAS  Google Scholar 

  • Bridel M (1911) Variations dans la composition de la racine de gentiane au cours de la végétation d’une année. J Pharm Chim 3: 294–305

    CAS  Google Scholar 

  • Bridel M (1914) Sur la présence de la gentiopicrine et du gentianose dans les raciness fraîches de la gentiane pourprée (Gentiana purpurea L.). J Pharm Chim 10: 62–66

    CAS  Google Scholar 

  • Bridel M (1920) Sur la présence simultanée du gentianose et du saccharose dans les espèces du genre Gentiana. J Pharm Chim 21: 306–311

    CAS  Google Scholar 

  • Bourquelot E, Bridel M (1910) Sur un sucre nouveau, le verbascose, retiré de la racine de Molene ( Verbascum Thapsus L. ). CR Acad Sci 151: 760–762

    Google Scholar 

  • Bourquelot E, Nardin L (1898) Sur la préparation du gentianose. J Pharm Chim 7: 289–292

    Google Scholar 

  • Cerbulis J (1954) Sugars in Caracas cacao beans. Arch Biochem Biophys 49: 442–450

    Article  PubMed  CAS  Google Scholar 

  • Cerbulis J (1955) Carbohydrates in cacao beans II. Sugars in Caracas cacao beans. Arch Biochem Biophys 58: 406–413

    Article  PubMed  CAS  Google Scholar 

  • Colin H, Augem A (1927) Nature et métabolism des glucides chez les Iris. CR Acad Sci 185: 475–478

    CAS  Google Scholar 

  • Colowick SP, Kaplan NO (1955-1979) Methods in enzymology, vols 1–59. Academic Press, London New York

    Google Scholar 

  • Courtois JE, Ariyoshi U (1960) Les galactosides du saccharose des racines de Cucubalus baccifer (Caryophyllacées). Étude de leur structure. CR Acad Sci 250: 1369–1371

    CAS  Google Scholar 

  • Courtois JE, Petek F, Dong T (1961) Synthèse de plantéose par action transférate de l’a-galactosidase des graines de Plantago. Bull Soc Chim Biol 43: 1189–1196

    PubMed  CAS  Google Scholar 

  • Cronquist A (1968) The evolution and classification of flowering plants. Nelson, London

    Google Scholar 

  • Crowden RK, Harborne JB, Heywood VH (1969) Chemosynthetics of the Umbelliferae- a general survey. Phytochemistry 8: 1963–1984

    Article  CAS  Google Scholar 

  • Dahlgren R (1975) A system of classification of the angiosperms to be used to demonstrate the distribution of characters. Bot Not 128: 119–147

    Google Scholar 

  • Davy J, Courtois JE (1965) Isoelement de divers trisaccharides et tétrasaccharides de raciness de Silene inflata. CR Acad Sci 261: 3483–3485

    CAS  Google Scholar 

  • Dey PM (1980) Biochemistry of a-D-galactosidic linkages in the plant kingdom. Adv Carbohydr Chem Biochem 37: 283–372

    Article  CAS  Google Scholar 

  • Dey PM, Pridham JB (1972) Biochemistry of a-galactosidases. Adv Enzymol Relat Subj Biochem 39: 91–130

    Google Scholar 

  • Eagles CF (1967) Variation in the soluble carbohydrate content of climatic races of Dactylis glomerata (cocksfoot) at different temperatures. Ann Bot 31: 645–651

    CAS  Google Scholar 

  • Edelman J, Dickerson AG (1966) The metabolism of fructose polymers in plants. Biochem J 98: 787–794

    PubMed  CAS  Google Scholar 

  • Edelman J, Jefford TG (1968) The mechanism of fructosan metabolism in higher plants as exemplified in Helianthus tuberosus. New Phytol 67: 517–531

    Article  CAS  Google Scholar 

  • Franz G, Meier H (1972) Untersuchungen über Vorkommen und Physiologie des Trisaccharides Gentianose. Z Pflanzenphysiol 66: 433–439

    Google Scholar 

  • French D (1954) The raffinose family of oligosaccharides. Adv Carbohydr Chem 9: 149–184

    Article  PubMed  CAS  Google Scholar 

  • French D (1955) Isolation and identification of planteose from tobacco seeds. J Am Chem Soc 77: 1024–1025

    Article  CAS  Google Scholar 

  • French D, Younquist RW, Lee A (1959) Isolation and crystallization of planteose from mint seeds. Arch Biochem Biophys 85: 471–473

    Article  PubMed  CAS  Google Scholar 

  • Gonzales NS, Pontis HG (1963) Uridine diphosphate fructose and uridine diphosphate acetylgalactosamine from Dahlia tubers. Biochim Biophys Acta 69: 179–181

    Article  Google Scholar 

  • Gorenflat R, Bourdu R (1962) Critères biochimiques et taxonomie expérimentale du genre Planîago. Rev Cytol Biol Veg 25: 349–360

    Google Scholar 

  • Gross D, Blanchard PH, Bell DJ (1954) Neo-kestose: a trisaccharide formed from sucrose by yeast invertase. J Chem Soc 1727–1730

    Google Scholar 

  • Haq S, Adams GA (1962) Oligosaccharides of birch sap. Can J Biochem Physiol 40: 989–997

    Article  PubMed  CAS  Google Scholar 

  • Hatanaka S (1959) Oligosaccharides in the seeds of Sesamum indicum L. Arch Biochem Biophys 82: 188–194

    Article  PubMed  CAS  Google Scholar 

  • Heber U, Santarius KA (1973) Cell death by cold and heat, and resistance to extreme temperatures. Mechanism of hardening and dehardening. In: Precht HJ, Christopherson H, Hensel H, Larcher W (eds) Temperature and life. Springer, Berlin Heidelberg New York, pp 232–263

    Google Scholar 

  • Hederson RW, Morton RK, Rawlinson WA (1959) Oligosaccharide synthesis in the banana and its relationship to the transferase activity of invertase. Biochem J 72: 340–348

    Google Scholar 

  • Hegnauer R (1962–1973) Chemotaxonomie der Pflanzen, vols I–IV. Birkhäuser, Basel Stuttgart

    Google Scholar 

  • Hegnauer R (1964) Chemotaxonomie der Pflanzen, vol III. Birkhäuser, Basel Stuttgart, pp 173–184

    Google Scholar 

  • Hegnauer R (1969) Chemotaxonomie der Pflanzen, vol V. Birkhäuser, Basel Stuttgart, pp 329–330

    Google Scholar 

  • Hegnauer R (1972) Chemical patterns and relationships of Umbelliferae. In: Heywood VH (ed) Biology and chemistry of the Umbelliferae. Suppl 1 Bot J Linn Soc 64: 267–277

    Google Scholar 

  • Hegnauer R (1973) Chemotaxonomie der Pflanzen, vol VI. Birkhäuser, Basel Stuttgart, pp 554–629

    Google Scholar 

  • Henry RJ, Darbyshire B (1980) Sucrose: sucrose fructosyl-transferase and fructan: fructan fructosyltransferase from Allium cepa. Phytochemistry 19: 1017–1020

    Article  CAS  Google Scholar 

  • Hestrin S, Feingold DS, Avigad D (1956) The mechanism of polysaccharide production from sucrose. Biochem J 64: 340–351

    PubMed  CAS  Google Scholar 

  • Hiller K (1969) Oligosaccharide in Eryngiumarten. Z Naturforsch 24b: 36–38

    CAS  Google Scholar 

  • Hiller K (1972) Chemosystematics of the Saniculoideae. In: Heywood VH (ed) Biology and chemistry of the Umbelliferae. Suppl 1 Bot J Linn Soc 64: 369–384

    Google Scholar 

  • Hopf H (1973) Biosynthese, Physiologie und Verbreitung von Oligosacchariden in Umbellifloren. Thesis, Univ Munich

    Google Scholar 

  • Hopf H, Kandier O (1974) Biosynthesis of umbelliferose in Aegopodium podagraria. Plant Physiol 54: 13–14

    Article  PubMed  CAS  Google Scholar 

  • Hopf H, Kandier O (1976) Physiologie der Umbelliferose. Biochem Physiol Pflanz 169: 5–36

    CAS  Google Scholar 

  • Hopf H, Kandier O (1977) Characterization of the “reserve cellulose” of the endosperm of Carum carvi as a (1 — 4)-β-mannan. Phytochemistry 16: 1715–1717

    Article  CAS  Google Scholar 

  • Hopf H, Kandler O (1980 a) Oligosaccharides as taxonomie and phylogenetic markers in angiosperms. 2nd Int Congr Syst Evol Biol Univ Br C, Vancouver, p 237

    Google Scholar 

  • Hopf H, Kandler O (1980 b) O-β-D-Glucopyranosyl-(1 — 1)-myo-inositol (glucinol) in higher plants. Z Pflanzenphysiol 100: 189–195

    CAS  Google Scholar 

  • Hopf H, Kandler O (1982) Occurrence and biosynthesis of gentiobiose in ripening fruits of Hedera helix. Z Pflanzenphysiol (in press)

    Google Scholar 

  • Hopf H, Lanzendörfer B, Kandier O (1982) Investigation of the oligosaccharides in the seeds of Sesamum indicum L. Z Pflanzenphysiol (in press)

    Google Scholar 

  • Imhoff V (1973) Synthesis of galactosides by chloroplasts isolated from pea leaves. Hoppe-Seyler’s Z Physiol Chem 354: 1550–1554

    Article  PubMed  CAS  Google Scholar 

  • Jeremias K (1962) Über den Einfluß der Temperatur auf die Speicherung der Raffinosezukker. Ber Dtsch Bot Ges 75: 313–332

    Google Scholar 

  • Jukes C (1978) The utilization of endogenous reserves in seeds of ash during maturation of the embryo and subsequent germination. Thesis Univ Sheffield

    Google Scholar 

  • Jukes C, Lewis DH (1974) Planteóse the major soluble carbohydrate of seeds of Fraxinus excelsior. Phytochemistry 13: 1519–1521

    Article  CAS  Google Scholar 

  • Kahl W, Roszkowsi A, Zurowska A (1969) The isolation of 6-kestose from the seeds of the horse chestnut ( Aesculus hippocastanum L. ). Carbohydr Res 10: 586–588

    Article  CAS  Google Scholar 

  • Kandler O (1967) Biosynthesis of poly- and oligosaccharides during photosynthesis in green plants. In: San Pietro A, Grear FA, Army TJ (eds). Harvesting the sun. Academic Press, London New York, pp 131–152

    Google Scholar 

  • Kandler O, Hopf H (1980) Occurrence, metabolism and function of oligosaccharides. In: Preiss J (ed) carbohydrates: structure and function Stumpf PK, Conn EE (eds) The biochemistry of plants, vol. III. Academic Press, London New York, pp 221–270

    Google Scholar 

  • Kandler O, Dover C, Ziegler P (1979) Kälteresistenz der Fichte. Ber Dtsch Bot Ges 92: 225–241

    Google Scholar 

  • Karrer W (1958) Konstitution und Vorkommen der organischen Pflanzenstoffe. Birkhäuser, Basel Stuttgart

    Google Scholar 

  • Karrer W, Cherbuliez E, Eugster C (1977) Supplement 1. Konstitution und Vorkommen der organischen Pflanzenstoffe. Birkhäuser, Basel Stuttgart

    Google Scholar 

  • Keller F, Franz G (1974) Bildung und Transport des Trisaccharides Gentianose in Gentianalutea L. Verh Schweiz Naturforsch Ges: 205–207

    Google Scholar 

  • King RW, Zeevart JAD (1974) Enhancement of phloem exudation by chelating agents. Plant Physiol 53: 96–103

    Article  PubMed  CAS  Google Scholar 

  • Larcher W, Heber U, Santarius KA (1973) Temperature resistance and survival. In: Precht HJ, Christopherson H, Hensel H, Larcher W (eds) Temperature and life. Springer, Berlin Heidelberg New York, pp 195–292

    Google Scholar 

  • Lehle L, Tanner W (1973) The function of myo-inositol in the biosynthesis of raffinose. Eur J Biochem 38: 103–110

    Article  PubMed  CAS  Google Scholar 

  • Lehle L, Tanner W, Kandier O (1970) myo-Inositol, a cofactor in the biosynthesis of raffinose. Hoppe-Seyler’s Z Physiol Chem 351: 1494–1498

    Article  PubMed  CAS  Google Scholar 

  • Levitt J (1962) A sulfhydryl-disulfide hypothesis of frost injury and resistance in plants. J Theoret Biol 3: 355–391

    Article  CAS  Google Scholar 

  • Levitt J (1966) Winterhardiness in plants. In: Meryman HT (ed) Cryobiology. Academic Press, London New York, pp 495–563

    Google Scholar 

  • Loiseau D (1876) Vorschlag des Namens Raffinose für Substanz aus Rübenzucker. Ber Dtsch Chem Ges 9: 732

    Google Scholar 

  • MacLeod AM, McCorquodale H (1958) Trisaccharides of Lolium and Festuca. Nature (London) 182:815–816

    Article  CAS  Google Scholar 

  • Matile P (1978) Biochemistry and function of vacuoles. Annu Rev Plant Physiol 29: 193–213

    Article  CAS  Google Scholar 

  • Meyer A (1882) Über Gentianose. Hoppe-Seyler’s Z Physiol Chem 6: 135–138

    Google Scholar 

  • Moreno A, Cardini CE (1966) A raffinose-sucrose transgalactosidase from wheat germ. Plant Physiol 41: 909–910

    Article  PubMed  CAS  Google Scholar 

  • Morgenlie S (1970) A new tetrasaccharide of the stachyose type extracted from seeds of Festuca rubra L. Acta Chem Scand 24: 2149–2155

    Article  CAS  Google Scholar 

  • Murakami S (1941) Untersuchungen über Kohlenhydrate von den Labiaten. II. Über ein neues Hexasaccharid Ajugose aus den Wurzeln von Ajuga nipponensis (Makino). Acta Phytochimica 12: 97–114

    Google Scholar 

  • Nishimura M, Beevers H (1978) Hydrolases in vacuoles from Castor bean endosperm. Plant Physiol 62: 448

    Google Scholar 

  • Peel AJ (1975) Investigation with aphid stylets into the physiology of the sieve tubes. In: Zimmermann MH, Milburn JA (eds) Encyclopedia of plant physiology. New series, vol I. Springer, Berlin Heidelberg New York, pp 171–196

    Google Scholar 

  • Planta AV, Schulze E (1890) Über ein neues kristallisierbares Kohlenhydrat. Ber Dtsch Chem Ges 23: 1692–1699

    Article  Google Scholar 

  • Pontis HG (1966) Observations on the de novo synthesis of fructosans in vivo. Arch Biochem Biophys 116: 416–424

    Article  PubMed  CAS  Google Scholar 

  • Pridham JB (1960) Oligosaccharides and associated glycosidases in aspen tissues. Biochem J 76: 13–17

    PubMed  CAS  Google Scholar 

  • Pridham JB, Hassid WZ (1965) Biosynthesis of raffinose. Plant Physiol 40: 984–986

    Article  PubMed  CAS  Google Scholar 

  • Reid JSG (1971) Reserve carbohydrate metabolism in germinating seeds of Trigonella foenum -graecum L. Planta 100: 131–142

    Article  CAS  Google Scholar 

  • Santarius KA, Milde H (1977) Sugar compartmentation of frosthardy and partially dehardened cabbage of leaf cells. Planta 136: 163–166

    Article  CAS  Google Scholar 

  • Satyanarayana MN (1976 a) Biosynthesis of oligosaccharides and fructans in Agave vera cruz: Part I - Properties of a partially purified transfructosylase. Indian J Biochem Biophys 13: 261–266

    PubMed  CAS  Google Scholar 

  • Satyanarayana MN (1976 b) Biosynthesis of oligosaccharides and fructans in Agave vera cruz: Part II - Biosynthesis of oligosaccharides. Indian J Biochem Biophys 13: 398–407

    PubMed  CAS  Google Scholar 

  • Satyanarayana MN (1976 c) Biosynthesis of oligosaccharides and fructans in Agave vera cruz: Part III - Biosynthesis of fructans. Indian J Biochem Biophys 13: 408–412

    Google Scholar 

  • Saunders RM (1971) Fructosylraffinose, a tetrasaccharide in wheat bran. Phytochemistry 10: 491–493

    Article  CAS  Google Scholar 

  • Schlubach HH (1958) Der Kohlenhydratstoffwechsel der Gräser. In: Zechmeister L (ed) Progress in the chemistry of organic natural products, vol XV. Springer, Wien, pp 1–29

    Google Scholar 

  • Schlubach HH (1961) Der Kohlenhydratstoffwechsel im Roggen und Weizen. In: Zechmeister L (ed) Progress in the chemistry of organic natural products, vol XIX. Springer, Wien, pp 291–316

    Google Scholar 

  • Schlubach HH (1965) Der Kohlenhydratstoffwechsel in Gerste, Hafer und Rispenhirse. In: Zechmeister L (ed) Progress in the chemistry of organic natural products, vol XXIII. Springer, Wien, pp 46–61

    Google Scholar 

  • Schwarzmaier G (1973) Untersuchungen über den Stoffwechsel der Saccharosegalactoside bei Caryophyllaceen. Thesis, Univ Munich

    Google Scholar 

  • Scott RW, Jefford RG, Edelman J (1966) Sucrose fructosyltransferase from higher plant tissues. Biochem J 100: 23

    Google Scholar 

  • Sellmair J, Beck E, Kandier O, Kress A (1977) Hamamelose and its derivatives as chemotaxonomic markers in the genus Primula. Phytochemistry 16: 1201–1204

    Article  CAS  Google Scholar 

  • Senser M, Kandier O (1967) Galactinol, ein Galactosyldonor für die Biosynthese der Zucker der Rafflnosefamilie in Blättern. Z Pflanzenphysiol 57: 376–388

    CAS  Google Scholar 

  • Senser M, Dittrich P, Kandier O, Thanbichler A, Kuhn B (1971) Isotopenstudien über den Einfluß der Jahreszeit auf den Oligosaccharidumsatz bei Coniferen. Ber Dtsch Bot Ges 84: 445 - 455

    CAS  Google Scholar 

  • Shafizadeh F, Wolfrom ML (1958) Structure, properties and occurrence of the oligosaccharides. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie, vol VI. Springer, Berlin Heidelberg New York, pp 63–85

    Google Scholar 

  • Somme R, Wickstrom A (1965) The reaction of ß-fructosidase with the monogalactosylsucroses extracted from plants. Acta Chem Scand 19: 537–540

    Article  CAS  Google Scholar 

  • Staesche K (1966) Die jahresperiodische Entwicklung des Wurzel- und Sproßsystems von Symphytum officinale L. und ihre Beziehung zu Speicherung und Verbrauch der Kohlenhydrate. Planta 71: 268–282

    Article  CAS  Google Scholar 

  • Stanek J, Cerny M, Pacak J (1965) The oligosaccharides. Academic Press, London New York

    Google Scholar 

  • Takhtajan A (1959) Die Evolution der Angiospermen. Fischer, Jena

    Google Scholar 

  • Takiura K, Nakagawa J (1963) Oligosaccharides IV. Separation of oligosaccharides and identification of disaccharides in gingseng root. J Pharm Soc Jpn 83: 298–300 (Chem Abstr 59:8849)

    Google Scholar 

  • Tanner W, Kandler O (1966) Biosynthesis of Stachyose in Phaseolus vulgaris. Plant Physiol 41: 1540–1542

    Article  PubMed  CAS  Google Scholar 

  • Tanner W, Kandler O (1968) myo-Inositol, a cofactor in the biosynthesis of stachyose. Eur J Biochem 4: 233–239

    Article  PubMed  CAS  Google Scholar 

  • Tanner W, Lehle L, Kandier O (1967) myo-Inositol, a cofactor in the biosynthesis of verbascose. Biochem Biophys Res Commun 29: 166–171

    Article  PubMed  CAS  Google Scholar 

  • Tanner W, Seifarth H, Kandier O (1968) Der Umsatz der Oligosaccharide in reifenden und keimenden Samen von Phaseolus vulgaris. Z Pflanzenphysiol 58: 369–377

    CAS  Google Scholar 

  • Trip P, Nelson CD, Krotkov G (1965) Selective and preferential translocation of 14C-labeled sugars in white ash and lilac. Plant Physiol 40: 740–747

    Article  PubMed  CAS  Google Scholar 

  • Umemura Y, Nakamura M, Funahashi S (1967) Isolation and characterisation of uridine diphosphate fructose from tubers of Jerusalem artichoke ( Helianthus tuberosus L. ). Arch Biochem Biophys 119: 240–252

    Article  PubMed  CAS  Google Scholar 

  • Veno Y, Ishiguro K, Yamada M, Abe M, Kato K (1978) In: Symp Carbohydr Chem 9th, London, pp 53–54

    Google Scholar 

  • Wanner H (1958) Speicherung von Kohlenhydraten in unterirdischen Reserveorganen. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie, vol VI. Springer, Berlin Heidelberg New York, pp 855–870

    Google Scholar 

  • Wattiez N, Hans M (1943) A holoside extracted from the seeds of Plantago major L. and Plantago ovata Forsk. Bull Acad R Med Belg 8: 386–396

    CAS  Google Scholar 

  • Webb JA, Gorham PR (1964) Translocation of photosynthetically assimilated C14 in straight-necked squash. Plant Physiol 39: 663–672

    Article  PubMed  CAS  Google Scholar 

  • Webb JA, Pathak S (1970) Biosynthesis of stachyose in Cucurbita. Suppl Plant Physiol 46: 27

    Google Scholar 

  • Whalley HCS (1952) Kestose and sugar losses. Int Sugar J 54: 127

    Google Scholar 

  • Whistler RL, Wolfrom ML (1962–1980) Methods in carbohydrate chemistry, vols I-VIII. Academic Press, London New York

    Google Scholar 

  • White ML, Secor GE (1953) Chromatographic evidence for the occurrence of a fructosyl raffinose in wheat flour and wheat. Arch Biochem Biophys 44: 244–245

    Article  PubMed  CAS  Google Scholar 

  • Wickstrom A, Svendsen AB (1956) La structure d’un isomère du raffinose isolé des racines de Y Angelica archangelica L. subsp. norvégica ( Rupr.) Nordh. Acta Chem Scand 10: 1199–1207

    CAS  Google Scholar 

  • Wickstrom A, Courtois JE, Le Dizet P, Archambault A ( 1958 a) Recherches sur la structure du tétraholoside: Lychnose. CR Acad Sci 246: 1624–1626

    CAS  Google Scholar 

  • Wickstrom A, Courtois JE, Le Dizet P, Archambault A (1958 b) Étude de la structure des pentasaccharides de racines de Lychnis dioica. CR Acad Sci 247: 1911–1913

    CAS  Google Scholar 

  • Wild GM, French D (1952) The galactan series of oligosaccharides. Proc Iowa Acad Sci 59: 226–230

    CAS  Google Scholar 

  • Yaphe W, Arsenault GP (1965) Improved resorcinol reagent for the determination of fructose, and of 3,6-anhydrogalactose in polysaccharides. Anal Biochem 13: 143–148

    Article  CAS  Google Scholar 

  • Ziegler H (1975) Nature of substances in phloem; nature of transported substances. In: Pirson A, Zimmermann MH (eds) Encyclopedia of plant physiology. New series, vol I. Springer, Berlin Heidelberg New York, pp 59–100

    Google Scholar 

  • Ziegler P, Kandier O (1980) Tonoplast stability as a critical factor in frost injury and hardening of spruce (Picea abies L. Karst) needles. Z Pflanzenphysiol 99: 393–410

    Google Scholar 

  • Zimmermann MH, Ziegler H (1975) List of sugars and sugar alcohols in sieve tube exudates. In: Pirson A, Zimmermann MH (eds) Encyclopedia of plant physiology. New series, vol I. Springer, Berlin Heidelberg New York, pp 480–505

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kandler, O., Hopf, H. (1982). Oligosaccharides Based on Sucrose (Sucrosyl Oligosaccharides). In: Loewus, F.A., Tanner, W. (eds) Plant Carbohydrates I. Encyclopedia of Plant Physiology, vol 13 / A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68275-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68275-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68277-3

  • Online ISBN: 978-3-642-68275-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics