Skip to main content

Long-range Energy Continua in the Living Cell: Protochemical Considerations

  • Conference paper
Coherent Excitations in Biological Systems

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

When we approach life at the level of the single cell and enter the domain of cellular biochemistry/biophysics, we find (contrary to the picture given in standard textbooks) a highly fragmented status rerum, largely dominated by an air of reductionism (viz., 1+1 = 2). Most attempts at understanding the essence of the “living state” at this level have a materialistic basis. Such an outlook all too often fails to relate the fact, that living systems are, by their nature, defined in a dynamic sense. Hence, we should study the cell by “reducing” it, not to its elements of matter, rather to its elementary processes. A “process” view imparts an emphasis on energetics and energy flow. Here, we are obliged to apply a lesson gleaned from physics — that of matter/energy duality in physical systems. One finds, that matter is the substance of things, while energy is the moving principle /2/.

“The visible world is neither matter nor spirit, but the invisible organization of energy” /l/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pagels, H.R. (1982). The Cosmic Code; Quantum Physics as the Language of Nature. New York: Simon and Schuster.

    Google Scholar 

  2. Zuidgeest, M. (1977). Acto Biotheor. 26, 30.

    Article  Google Scholar 

  3. Lumry, R. and Biltonen, R. (1969). In Structure and Stability of Biological Macromolecules /S.N. Timasheff and G.D. Fasman, eds.), p. 65. New York: Dekker.

    Google Scholar 

  4. Lumry, R. (1971). In Electron and Coupled Energy Transfer in Biological Systems (T. King and M. Klingenberg, eds.), p. 1, New York: Bekker.

    Google Scholar 

  5. Welch, G.R. (1977). Prog. Biophys. Mol. Biol. 32, 103.

    Article  PubMed  CAS  Google Scholar 

  6. Welch, G.R. and Keleti, T. (1981). J. Theor. Biol. 93, 701.

    Article  PubMed  CAS  Google Scholar 

  7. Berry, M.N. (1981). FEBS Lett. 134, 133.

    Article  PubMed  CAS  Google Scholar 

  8. Zalokar, M. (1960). Exp. Cell Res. 19, 114.

    Article  PubMed  CAS  Google Scholar 

  9. Kempner, E.S. and Miller, J.H. (1968) Exp. Cell Res. 51, 150.

    Article  PubMed  CAS  Google Scholar 

  10. Coleman, R. (1973). Biochem. Biophys. Acta 300, 1.

    PubMed  CAS  Google Scholar 

  11. Sitte, P. (1980). In Cell Compartmentation and Metabolic Channeling (L. Nover, F. Lynen, and K. Mothes, eds.), p. 17. New York: Elsevier /North-Holland.

    Google Scholar 

  12. Srere, P. (1981). Trends Biochem. Sei. 6, 4.

    Article  CAS  Google Scholar 

  13. Schliwa, M., van Blerkom, J., and Porter, K.R. (1981). Proc. Nat. Acad. Sei. USA 78, 4329.

    Article  PubMed  CAS  Google Scholar 

  14. Peters, R.A. (1930). Trans. Faraday Soc. 26, 797.

    Article  CAS  Google Scholar 

  15. De Duve, C. (1964). J. Theor. Biol. 6, 33.

    Article  PubMed  CAS  Google Scholar 

  16. McClare, C.W.F. (1974). Ann. N.Y. Acad. Sei. 227, 74.

    Article  PubMed  CAS  Google Scholar 

  17. Mitchell, P. (1979). Eur. J. Biochem. 95, 1.

    Article  PubMed  CAS  Google Scholar 

  18. Morowitz, H.J. (1978). Amer. J. Physiol. 235, R99.

    PubMed  CAS  Google Scholar 

  19. Gutfreund, H. (1976). FEBS Lett. 62, (Suppl.), El.

    Google Scholar 

  20. Fersht, A. (1977). Enzyme Structure and Mechanism. San Francisco: Freeman.

    Google Scholar 

  21. Warshel, A. (1978). Proc. Nat. Acad. Sei. USA 75, 5250.

    Article  PubMed  CAS  Google Scholar 

  22. Welch, G.R., Somogyi, B., and Damjanovich, S. (1982). Prog. Biophys. Mol. Biol. 39, 109.

    Article  PubMed  CAS  Google Scholar 

  23. Wang, J.H. (1968). Science 161, 328.

    Article  PubMed  CAS  Google Scholar 

  24. Metzeler, D.E. (1979). Adv. Enzymol. 50, 1.

    Google Scholar 

  25. Hol, W.G.J., van Duijenen, P.T., and Berendsen, H.J.C. (1978). Nature (London), 273, 443.

    Article  CAS  Google Scholar 

  26. van Duijnen, P.T. and Thole, B.T, (1981). Chem. Phys. Lett. 83, 129.

    Article  Google Scholar 

  27. Krimm, S. and Dwivedi, A.M. (1982). Science 216, 407.

    Article  PubMed  CAS  Google Scholar 

  28. Dunker, A.K. (1982). J. Theor. Biol. 97, 95.

    Article  PubMed  CAS  Google Scholar 

  29. Scott, A.C. (1981). In Nonlinear Phenomena in Physics and Biology (R.H. Enns et al., eds.), p. 7. New York: Plenum Press.

    Google Scholar 

  30. Nagle, J.F. and Morowitz, H.J. (1978). Proc. Nat. Acad. Sei. USA 75, 298.

    Article  PubMed  CAS  Google Scholar 

  31. Nagle, J.F., Mille, M., and Morowitz, H.J. (1980). J. Chem. Phys. 72, 3959.

    Article  CAS  Google Scholar 

  32. Banacky, P. (1981). Biophys. Chem. 13, 39.

    Article  PubMed  CAS  Google Scholar 

  33. Lewis, T.J. (1979). In Submolecular Biology and Cancer (Ciba Foundation Symposium No. 67 ). New York: Excerpta Medica.

    Google Scholar 

  34. Volkenstein, M.K. (1981). J. Theor. Biol. 89, 45.

    Article  PubMed  CAS  Google Scholar 

  35. Conrad, M. (1979). J. Theor. Biol. 79, 137.

    Article  PubMed  CAS  Google Scholar 

  36. Lumry, R. and Rosenberg, A. (1975). Coloques Internationaux du C.N.R.S. (No. 246 — “L’Eau et Les Systèmes Biologiques”), p.53.

    Google Scholar 

  37. Ikegami, A. (1977). Biophys. Chem. 6, 117.

    Article  PubMed  CAS  Google Scholar 

  38. Caserta, G. and Cervigni T. (1974). Proc. Nat. Acad. Sei. USA 71, 4421.

    Article  PubMed  CAS  Google Scholar 

  39. Berry, N.M., Grivell, A.R. and Wallace, P.G. In Comprehensive Treatise on Electrochemistry, Vol. 10, Bioelectrochemistry (S. Srinivasan and Y.A. Bhizmadzhev, eds.). New York: Plenum Press, in press.

    Google Scholar 

  40. Kell, D.B. (1979). Biochim. Biophys. Acta 549, 45.

    Google Scholar 

  41. Hopfinger, A.J. (1977). Intermolecular Interactions and Biological Organization. New York: Wiley.

    Google Scholar 

  42. Fröhlich, H. (1975). Proc. Nat. Acad. Sei. USA 72, 4211.

    Article  PubMed  Google Scholar 

  43. Gutman, M and Nachliel, E. (1982). European Bioenergetics Conference (EBEC) Reports 2, 319.

    Google Scholar 

  44. Welch, G.R. (1977). J. Theor. Biol. 68, 267.

    Article  PubMed  CAS  Google Scholar 

  45. Welch, G.R. Somogyi, B., Matko, J. and Papp, S. J. Theor. Biol., in press.

    Google Scholar 

  46. Fröhlich, H. (1970). Nature (London) 228, 1093.

    Article  Google Scholar 

  47. Hammes, G.G. (1982). Proc. Nat. Acad. Sei. USA 79, 6881.

    Article  PubMed  CAS  Google Scholar 

  48. Benett, A.F., Buckley, P.D., and Blackwell, L.F. (1982). Biochemistry 21, 4407.

    Article  Google Scholar 

  49. Kell, D.B. and Morris, J.G. (1981). In Vectorial Reactions in Electron and Ion Transport in Mitochondria and Bacteria (F. Palmieri et al., eds.), p. 339. New York: Elsevier/North-Holland.

    Google Scholar 

  50. Friedrich, P. (1974). Acta Biochim. Biophys. Acad. Sei. Hung. 9, 159.

    PubMed  CAS  Google Scholar 

  51. Weber, J.P. and Bernhard, S.A. (1982). Biochemistry 21, 4189.

    Article  PubMed  CAS  Google Scholar 

  52. McLaren, A.D. (1960). Enzymologia 21, 356.

    CAS  Google Scholar 

  53. Sols, A. and Marco. R. (1970) Curr. Top. Cell. Regul. 2, 227.

    CAS  Google Scholar 

  54. Fripiat, J.J. and Cruz-Cumplido, M.I. (1974). Ann. Rev. Earth Plan Sei. 2, 239.

    Article  Google Scholar 

  55. Mortland, M.M. and Raman, K.V. (1968). Clay and Clay Mineral 16, 393.

    Article  Google Scholar 

  56. Good, W. (1973). J. Theor. Biol. 39, 249.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Welch, G.R., Berry, M.N. (1983). Long-range Energy Continua in the Living Cell: Protochemical Considerations. In: Fröhlich, H., Kremer, F. (eds) Coherent Excitations in Biological Systems. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69186-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69186-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69188-1

  • Online ISBN: 978-3-642-69186-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics