Skip to main content

Calcium and Calmodulin Control of Neurotransmitter Synthesis and Release

  • Chapter
Calcium and Cell Physiology

Abstract

Calcium ions play a major role in the activity and function of nervous tissue (Rubin 1972; Rasmussen and Goodman 1977). One of the most widely recognized roles of Ca2+ in synaptic function is its action in synaptic modulation and neurotransmission. Earlier studies demonstrated that the relase of neurotransmitter substances by vertebrate neuromuscular junctions was dependent on the Ca2+ ion concentration in the media (Rubin 1972; DelCastillo and Stark 1952). Studies at the synaptic level showed that the effects of Ca2+ on neurotransmission were not secondary to effects of Ca2+ on the presynaptic action potential, but were directly dependent on the entry of Ca2+ into the nerve terminal (Katz and Miledi 1969, 1970; Miledi and Slater 1966; Miledi 1973). The role of Ca2+ in stimulus-secretion coupling has also been demonstrated in a variety of tissues (Douglas 1968).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amy CM, Kirshner N (1981) Phosphorylation of adrenal medulla cell proteins in conjunction with stimulation of catecholamine secreation. J Neurochem 3: 847–854

    Article  Google Scholar 

  • Bazan NG Jr (1971) Phospholipase A1 and A2 in brain subcellular fractions. Acta Physiol Lat Am 21: 101–106

    PubMed  CAS  Google Scholar 

  • Bennett MK, Erondu NE, Kennedy MB (1983) Purification and characterization of a calmodulin-dependent protein kinase that is highly concentrated in brain. J Biol Chem 258: 12735–12744

    PubMed  CAS  Google Scholar 

  • Blaustein MP, Johnson EM, Needleman P (1972) Calcium-dependent norepinephrine release from presynaptic nerve endings in vitro. Proc Natl Acad Sci USA 69: 2237–2240

    Article  PubMed  CAS  Google Scholar 

  • Burke BE, DeLorenzo RJ (1981) Calcium-and calmodulin-dependent phosphorylation of neurotubulin. Proc Natl Acad Aci USA 78: 991–995

    Article  CAS  Google Scholar 

  • Burke BE, DeLorenzo RJ (1982a) Ca2+ and calmodulin-regulated endogenous tubulin kinase activity in presynaptic nerve terminal preparations. Brain Res 236: 393–415

    Article  PubMed  CAS  Google Scholar 

  • Burke BE, DeLorenzo RJ (1982b) COI- and calmodulin-dependent phosphorylation of endogenous synaptic vesicle tubulin by a vesicle-bound calmodulin kinase system. J Neurochem 38: 1205–1218

    Article  PubMed  CAS  Google Scholar 

  • Carlin RK, Grab DJ, Cohen RS, Siekevitz P (1980) Isolation and characterization of postsynaptic densites from various brain regions: enrichment of different types of postsynaptic densites. J Cell Biol 86: 831–843

    Article  PubMed  CAS  Google Scholar 

  • Cheung WY (1980) Calmodulin plays a pivotol role in cellular regulation. Science (Wash DC) 207: 19–27

    Article  CAS  Google Scholar 

  • Del Castillo J, Stark L (1952) The effects of calcium ions on the motor end-plate potentials. J Physiol (Lond) 124: 553–559

    Google Scholar 

  • DeLorenzo RJ (1976) Calcium-dependent phosphorylation of specific synaptosomal fraction proteins: possible role of phosphorylation in mediating neurotransmitter release. Biochem Biophys Res Commun 71: 590–597

    Article  PubMed  CAS  Google Scholar 

  • DeLorenzo RJ (1977) Antagonistic action of diphenylhydantoin and calcium on the level of phosphorylation of particular rat and human brain proteins. Brain Res 134: 125–138

    Article  PubMed  CAS  Google Scholar 

  • DeLorenzo RJ (1980a) Role of calmodulin in neurotransmitter release and synaptic function. Ann NY Acad Sci 356: 92–109

    Article  PubMed  CAS  Google Scholar 

  • DeLorenzo RJ (1980b) Phenytoin: calcium and calmodulin dependent protein phosphorylation and neurotransmitter release. Adv Neurol 27: 399–444

    PubMed  CAS  Google Scholar 

  • DeLorenzo RJ (1981a) The calmodulin hypothesis of neurotransmission. Cell Calcium 2: 365–385

    Article  PubMed  CAS  Google Scholar 

  • DeLorenzo RJ (198lb) Calcium, calmodulin and synaptic function: modulation of neurotransmitter release, nerve terminal protein phosphorylation and synaptic vesicle morphology by calcium and calmodulin. In: Tapi R and Cotman CW (eds) Regulatory mechanisms of synaptic transmission. Plenum, New York, pp 205–240

    Google Scholar 

  • DeLorenzo RJ (1982) Calmodulin in neurotransmitter release and synaptic function. Fed Proc Fed Am Soc Exp Biol 41: 2265–2272

    CAS  Google Scholar 

  • DeLorenzo RJ (1983) Calcium-calmodulin in protein phosphorylation in neuronal excitability and anticonvulsant drug action. Adv. Neurol. 34: 325–338

    PubMed  CAS  Google Scholar 

  • DeLorenzo RJ, Freedman SD (1977a) Calcium-dependent phosphorylation of synaptic vesicle proteins and its possible role in mediating neurotransmitter release and vesicle function. Biochem Biophys Res Commun 77: 1036–1043

    Article  PubMed  CAS  Google Scholar 

  • DeLorenzo RJ, Freedman SD (1977b) Possible role of calcium-dependent protein phosphorylation in mediating neurotransmitter release and anticonvulsant action. Epilepsia 18: 357–365

    Article  PubMed  CAS  Google Scholar 

  • DeLorenzo RJ, Glaser GH (1976) Effects of diphenylhydantoin on the endogenous phosphorylation of brain protein. Brain Res 105: 381–386

    Article  PubMed  CAS  Google Scholar 

  • DeLorenzo RJ, Emple GP, Glaser GH (1977) Regulation of the level of endogenous phosphorylation of specific brain proteins by diphenylhydantoin. J Neurochem 28: 21–30

    Article  PubMed  CAS  Google Scholar 

  • DeLorenzo RJ, Freedman SD, Yohe WB, Maurer SC (1979) Stimulation of Ca2+ dependent neurotransmitter release and presynaptic nerve terminal protein phosphorylation by calmodulin and a calmodulin-like protein isolated from synaptic vesicles. Proc Natl Acad Sci USA 76: 1838–1842

    Article  PubMed  CAS  Google Scholar 

  • DeLorenzo RJ, Burdette S, Holderness J (1981) Benzodiazepine inhibition of the calcium-calmodulin protein kinase systems in brain membranes. Science (Wash DC) 212: 1157–1159

    Article  Google Scholar 

  • DeLorenzo RJ, Gonzales B, Goldenring JR, Bowling A, Jacobson R (1982) Calcium-calmodulin tubulin kinase system and its role in mediating the calcium signal in brain. Prog Brain Res 56: 255–286

    Article  CAS  Google Scholar 

  • Douglas WW (1968) Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Br J Pharmacol 34: 451–474

    PubMed  CAS  Google Scholar 

  • Ehrlich YH (1978) Phosphoproteins as specifiers for mediators and modulators in neuronal function. In: Ehrlich YH, Volarka J, Davis LO, Brunngraber EG (eds) Modulators, mediators and specifiers in brain function. Plenum, New York, pp 75–101

    Google Scholar 

  • Goldenring JR, Gonzalez B, DeLorenzo RJ (1982) Isolation of brain calcium-calmodulin tubulin kinase containing calmodulin-binding proteins. Biochem Biophys Res Commun 108: 421–428

    Article  PubMed  CAS  Google Scholar 

  • Goldenring JR, Gonzalez B, McGuire JS, DeLorenzo RJ (1983) Purification and characterization of a calmodulin-dependent kinase from rat brain cytosol able to phosphorylate tubulin and microtubule-associated proteins. J Biol Chem 258: 12632–12640

    PubMed  CAS  Google Scholar 

  • Goracci G, Porcellati G, Woelk H (1978) Subcellular localization and distribution of phospholipases A in liver and brain tissue. In: Galli et al. (eds) Advances in prostaglandin and thromboxane research. Raven, New York, pp 55–67

    Google Scholar 

  • Grab DJ, Carlin RK, Siekevitz P (1980) The presence and functions of calmodulin in the postsynaptic density. Ann NY Acad Sci 356: 55–72

    Article  PubMed  CAS  Google Scholar 

  • Grab DJ, Berzins K, Cohen RS, Siekevitz P (1979) Presence of calmodulin in postsynaptic densities isolated from canine cerebral cortex. J Biol Chem 254: 8690–8696

    PubMed  CAS  Google Scholar 

  • Greengard P (1976) Possible role for cyclic nucleotides and phosphorylated membrane proteins in postsynaptic actions of neurotransmitters. Nature (Lond) 260: 101–8

    Article  CAS  Google Scholar 

  • Greengard P (1978) Phosphorylated proteins as physiological effectors. Science (Wash DC) 199: 146–152

    Article  CAS  Google Scholar 

  • Greengard P (1981) Intracellular signals in the brain. Harvey Lect 75: 277–331

    CAS  Google Scholar 

  • Hamon M, Bourgoin S, Hery F, Simonnet G (1978) Activation of tryptophan hydroxylase by adenosine triphosphate, magnesium and calcium. Mol Pharmacol 14: 99–110

    PubMed  CAS  Google Scholar 

  • Jameson L, Frey T, Zeeberg B, Daeldorf F, Caplow M (1980) Inhibition of microtubule assemb y by phosphorylation of microtubule-associated proteins. Biochemistry 19: 2472–2479

    Article  PubMed  CAS  Google Scholar 

  • Katz B, Miledi R (1969) Spontaneous and evoked activity of motor nerve endings in calcium ringer. J Physiol (Lond) 203: 689–706

    CAS  Google Scholar 

  • Katz B, Miledi R (1970) Further study of the role of calcium in synaptic transmission. J Physiol (Lond) 207: 789–801

    CAS  Google Scholar 

  • Kennedy MB, McGuinness T, Greengard P (1983) A calcium/calmodulin-dependent protein kinase from mammalian brain that phosphorylates synaptsin I: partial purification and characterization. J Neurosci 3: 818–831

    PubMed  CAS  Google Scholar 

  • Kim H, Binder LI, Rosenbaum JL (1979) The periodic association of MAP 2 with brain micro-tubules in vitro. J Cell Biol 80: 266–276

    Article  PubMed  CAS  Google Scholar 

  • Klee CB, Crouch TH, Richman PG (1980) Calmodulin. Annu Rev Biochem 49: 489–515

    Article  CAS  Google Scholar 

  • Krueger B, Forn J, Greengard P (1977) Depolarization-induced phosphorylation of specific proteins, mediated by calcium influx, in rat brain synaptosomes. J Biol Chem 252: 2764–2773

    PubMed  CAS  Google Scholar 

  • Kuhn DM, Lovernberg W (1982) Role of calmodulin in the activation of tryptophan hydroxylase. Fed Proc 41: 2258–2264

    PubMed  CAS  Google Scholar 

  • Kuhn DM, Vogel RL, Lovenberg W (1978) Calcium-dependent activation of tryptophan hydroxylase by ATP and magnesium. Biochem Biophys Res Commun 82: 759–766

    Article  PubMed  CAS  Google Scholar 

  • Lysz TW, Sze PY (1978) Activation of brain tryptophan hydroxylase by a phosphorylating system. J Neurosci Res 3: 411–418

    Article  PubMed  CAS  Google Scholar 

  • Marcum JR, Dedman JR, Brinkley BR, Means AR (1978) Control of microtubule assembly and disassembly by calcium-dependent regulator protein. Proc Natl Acad Sci USA 75: 3771–3775

    Article  PubMed  CAS  Google Scholar 

  • Michaelson DM, Advissar S (1979) Ca2+-dependent phosphorylation of purely cholinergic torpedo synaptosomes. J Biol Chem 254: 12542–12546

    PubMed  CAS  Google Scholar 

  • Miledi R (1973) Transmitter release induced by injection of calcium ions into nerve terminals. Proc R Soc (Lond) B Biol Sci 183: 421–425

    Article  CAS  Google Scholar 

  • Miledi R, Slater CR (1966) The action of calcium on neuronal synapses in the squid. J Physiol (Lond) 184: 473–478

    CAS  Google Scholar 

  • Moskowitz N, Schook W, Puszkin S (1982) Interaction of brain synaptic vesicles induced by endogenous Ca2+ dependent phospholipase A2. Science (Wash DC) 216: 305–307

    Article  CAS  Google Scholar 

  • Olmsted JB, Borisy GG (1973) Microtubules. Annu Rev Biochem 42: 507–531

    Article  CAS  Google Scholar 

  • Rasmussen H, Goodman DBP (1977) Relationship between calcium and cyclic nucleotides in cell activation. Physiol Rev 57: 421–509

    PubMed  CAS  Google Scholar 

  • Rubin RP (1972) The role of calcium in the release of neurotransmitter substances and hormones. Pharmacol Rev 22: 389–428

    Google Scholar 

  • Schulman H, Greengard P (1978a) Stimulation of brain membrane protein phosphorylation by calcium and endogenous heat-stable protein. Nature (Lond) 271: 478–479

    Article  CAS  Google Scholar 

  • Schulman H, Greengard P (1978b) Calcium-dependent protein phosphorylation system in membranes from various tissues, and its activation by “calcium-dependent regulator.” Proc Natl Acad Sci USA 75: 5432–5436

    Article  PubMed  CAS  Google Scholar 

  • Sobue K, Fujita M, Muramoto Y, Kakiuchi S (1981) The calmodulin-binding protein in micro-tubules is tau factor. FEBS Lett 132: 137–140

    Article  PubMed  CAS  Google Scholar 

  • Vogt W (1978) Role of phospholipase A2 in prostaglandin formation. In: Galli C et al. (eds) Advances in prostaglandin and thromboxane research, vol. 3. Raven, New York, pp 89–95

    Google Scholar 

  • Weiss B, Proxialeck W, Cimino M, Barnette MS, Wallace TL (1980) Pharmacological regulation of calmodulin. Ann NY Acad Sci 356: 319–345

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi T, Fujisawa H (1979a) Regulation of rat brainstem tryptophan 5-monooxygenasecalcium-dependent reversible activation by ATP and magnesium. Arch Biochem Biophys 198: 219–226

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi T, Fujisawa H (1979b) Activation of tryptophan 5-monooxygenase by calcium-dependent regulator protein. Biochem Biophys Res Commun 90: 28–35

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi T, Fujisawa H (1983) Purification and characterization of the brain calmodulin-dependent protein kinase (Kinase II), which is involved in the activation of tryptophan 5-monooxygenase. Eur J Biochem 132: 15–21

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag, Berlin Heidelberg

About this chapter

Cite this chapter

DeLorenzo, R.J. (1985). Calcium and Calmodulin Control of Neurotransmitter Synthesis and Release. In: Marmé, D. (eds) Calcium and Cell Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70070-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70070-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70072-9

  • Online ISBN: 978-3-642-70070-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics