Skip to main content

The Oxidation of NADH by Plant Mitochondria

  • Chapter
Higher Plant Cell Respiration

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 18))

Abstract

Intensive investigation of molecular mechanisms involved in plant respiration began in the late 1930’s. Before this period interest centered mainly on cytological observations using the uptake of Janus Green B to detect the mitochondria. These early studies were reviewed by Newcomer (1940), who was not convinced that mitochondria were the centers of respiratory metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abou-Khalil S, Hanson JB (1977) Net adenosine diphosphate accumulation in mitochondria. Arch Biochem Biophys 183:581–587.

    PubMed  CAS  Google Scholar 

  • Archokov AI, Karyakin AV, Skulachev VP (1974) Intermembrane electron transfer in mitochondrial and microsomal systems. FEBS Lett 39:239–242.

    Google Scholar 

  • Arron GP, Edwards GE (1979) Oxidation of reduced adenine dinucleotide phosphate by plant mitochonria. Can J Biochem 57:1392–1394.

    PubMed  CAS  Google Scholar 

  • Arron GP, Edwards GE (1980) Oxidation of reduced nicotinamide adenine dinucleotide phosphate by potato mitochondria. Inhibition by sulfhydryl reagents. Plant Physiol 65:591–594.

    PubMed  CAS  Google Scholar 

  • Bäckström D, Hoffström I, Gustafsson I, Ehrenberg A (1973) An iron-sulphur protein in the mitochondrial outer membrane, reducible by NADH and NADPH. Biochem Biophys Res Commun 53:596–602.

    PubMed  Google Scholar 

  • Bäckström D, Lorusso M, Anderson K, Ehrenberg A (1978) Characterisation of the iron-sulphur protein of the mitochondrial outer membrane partially purified from beef kidney cortex. Biochim Biophys Acta 502:276–288.

    PubMed  Google Scholar 

  • Baker JE, Lieberman M (1962) Cytochrome components and electron transfer in sweet potato mitochondria. Plant Physiol 37:90–97.

    PubMed  CAS  Google Scholar 

  • Beevers H (1954) The oxidation of reduced diphosphopyridine nucleotide by an ascorbate system from cucumber. Plant Physiol 29:265–269.

    PubMed  CAS  Google Scholar 

  • Berger J, Avery GS (1943) Dehydrogenases of the Avena coleoptile. Am J Bot 30:290–297.

    CAS  Google Scholar 

  • Bergman A, Ericson I (1983) Efects of pH, NADH, succinate and malate on the oxidation of glycine in spinach leaf mitochondria. Physiol Plant 59:421–427.

    CAS  Google Scholar 

  • Bhagvat K, Hill R (1951) Cytochrome oxidase in higher plants. New Phytol 50:112–120.

    CAS  Google Scholar 

  • Bonner WD, Voss DO (1961) Some characteristics of mitochondria extracted from higher plants. Nature (London) 191:682–684.

    CAS  Google Scholar 

  • Boswell JG, Whiting GC (1940) Oxidase systems in the tissues of higher plants. New Phytol 39:241–265.

    CAS  Google Scholar 

  • Brummond DO, Burris RH (1953) Transfer of C14 by lupin mitochondria through reactions of the tricarboxylic acid cycle. Proc Natl Acad Sci USA 39:754–759.

    PubMed  CAS  Google Scholar 

  • Brunton CJ, Palmer JM (1973) Pathways for the oxidation of malate and reduced pyridine nucleotide by wheat mitochondria. Eur J Biochem 39:283–291.

    PubMed  CAS  Google Scholar 

  • Cammack R, Palmer JM (1973) EPR studies of iron-sulphur proteins of plant mitochondria. Ann NY Acad Sci 222:816–823.

    PubMed  CAS  Google Scholar 

  • Cammack R, Palmer JM (1977) Iron-sulphur centres in mitochondria from Arum macula-tum spadix with very high rates of cyanide resistant respiration. Biochem J 166:347–355.

    PubMed  CAS  Google Scholar 

  • Chance B, Theorell B (1959) Localisation and kinetics of reduced pyridine nucleotides in living cells by microfluorimetry. J Biol Chem 234:3044–3050.

    PubMed  CAS  Google Scholar 

  • Chance B, Bonner WD, Storey BT (1968) Electron transport in respiration. Annu Rev Plant Physiol 19:295–320.

    CAS  Google Scholar 

  • Chauveau M, Lance C (1971) Mitochondria of cauliflower influorescences. 2. Effects of electron transport inhibitors. Physiol Veg 9:353–359.

    CAS  Google Scholar 

  • Coleman JOD, Palmer JM (1971) Role of Ca2+ in the oxidation of exogenous NADH by plant mitochondria. FEBS Lett 17:203–208.

    PubMed  CAS  Google Scholar 

  • Conn E, Vennesland B, Kraemer LM (1949) Distribution of a triphosphopyridine nucleotide specific enzyme catalysing the reversible oxidative decarboxylation of malic acid in higher plants. Arch Biochem 23:179–197.

    PubMed  CAS  Google Scholar 

  • Cook ND, Cammack R(1983) Effects of the quinone analogue 5-n-undecyl-ö-hydroxy-4,7-dioxobenzothiazole (UHDBT) on cyanide-sensitive and cyanide-insensitive plant mitochondria Biochem Soc Trans:11.

    Google Scholar 

  • Cottingham IR, Moore AL (1983) Ubiquinone pool behavior in plant mitochondria. Biochim Biophys Acta 724:191–200.

    CAS  Google Scholar 

  • Cowley RC, Palmer JM (1978) The interaction of citrate and calcium in regulating the oxidation of exogenous NADH in plant mitochondria. Plant Sci Lett 11:345–350.

    CAS  Google Scholar 

  • Cowley RC, Palmer JM (1980) The interaction between exogenous NADH oxidase and succinate oxidase in Jerusalem artichoke (Helianthus tuberosus) mitochondria. J Exp Bot 31:199–207.

    CAS  Google Scholar 

  • Crane FL (1957) Electron transport and cytochromes of sub-cellular particles from cauliflower buds. Plant Physiol 32:619–625.

    PubMed  CAS  Google Scholar 

  • Cunningham WP (1964) Oxidation of externally added NADH by isolated corn root mitochondria. Plant Physiol 39:699–703.

    PubMed  CAS  Google Scholar 

  • Davies DD (1953) The Krebs cycle enzyme system of pea seedlings. J Exp Bot 4:173–183.

    CAS  Google Scholar 

  • Day DA, Wiskich JT (1974) The effect of exogenous nicotinamide adenine dinucleotide on the oxidation of NAD-linked substrates by isolated plant mitochondria. Plant Physiol 54:360–363.

    PubMed  CAS  Google Scholar 

  • Day DA, Wiskich JT (1975) Isolation and properties of the outer membrane of plant mitochondria. Arch Biochem Biophys 171:117–123.

    PubMed  CAS  Google Scholar 

  • Day DA, Wiskich JT (1977) Factors limiting respiration by isolated cauliflower mitochondria. Phytochemistry 16:1499–1502.

    CAS  Google Scholar 

  • Day DA, Wiskich JT (1978) Pyridine nucleotide interactions with isolated plant mitochondria. Biochim Biophys Acta 501:396–404.

    PubMed  CAS  Google Scholar 

  • Day DA, Rayner JR, Wiskich JT (1976) Characteristics of external NADH oxidation by beetroot mitochondria. Plant Physiol 58:38–42.

    PubMed  CAS  Google Scholar 

  • Day DA, Arron GP, Laties GG (1979) Enzyme distribution in potato mitochondria. J Exp Bot 30:539–549.

    CAS  Google Scholar 

  • Douce R, Christensen EL, Bonner JR WD (1972) Preparation of intact plant mitochondria. Biochim Biophys Acta 275:148–160.

    PubMed  CAS  Google Scholar 

  • Douce R, Manella CA, Bonner WD Jr (1973) The external NADH dehydrogenases of intact plant mitochondria. Biochim Biophys Acta 292:105–116.

    PubMed  CAS  Google Scholar 

  • Dry IB, Day DA, Wiskich JT (1983) Preferential oxidation of glycine by the respiratory chain of pea leaf mitochondria. FEBS Lett 158:154–158.

    CAS  Google Scholar 

  • Dubuy HG, Woods MW, Lackey MD (1950) Enzymatic activities of isolated normal and mutant mitochondria and plastids of higher plants. Science 111:572–574.

    PubMed  CAS  Google Scholar 

  • Ernster L, Dallner G, Azzone GF (1963) Differential effects of rotenone and amytal on mitochondrial electron and energy transfer. J Biol Chem 238:1124–1131.

    CAS  Google Scholar 

  • Gardeström P, Edwards GE (1983) Isolation of mitochondria from leaf tissue of Panicum miliaceum, a NAD-malic enzyme type C4 plant. Plant Physiol 71:24–29.

    PubMed  Google Scholar 

  • Goonewardena H, Wilson SB (1979) The oxidation of malate by isolated turnip (Brassica napus L.) mitochondria. III The effects of inhibitors. J Exp Bot 30:889–903.

    CAS  Google Scholar 

  • Hackett DP (1955a) Recent studies on plant mitochondria. Int Rev Cytol 4:143–196.

    Google Scholar 

  • Hackett DP (1955 b) A pathway of terminal oxidation in potato mitochondria. Plant Physiol 30.

    Google Scholar 

  • Hackett DP (1957) Respiratory mechanisms in the aroid spadix. J Exp Bot 8:157–171.

    CAS  Google Scholar 

  • Hackett DP (1961) Effect of salts on NADH oxidase activity and structure of sweet potato mitochondria. Plant Physiol 36:445–452.

    PubMed  CAS  Google Scholar 

  • Hackett DP (1963) Respiratory mechanisms and control in the higher plant tissues. In: Wright B (ed) Control mechanisms in respiration and fermentation. Ronald, New York. pp 105–127.

    Google Scholar 

  • Harmey MA, Ikuma H, Bonner WD (1966) Near ultra violet spectrum of white potato mitochondria. Nature (London) 209:174–175.

    CAS  Google Scholar 

  • Hasson EP, West CA (1971) Properties of a higher plant pyridine nucleotide transhydro-genase. Fed Proc Am Soc Exp Biol 30:1189 Abs.

    Google Scholar 

  • Hawker JS, Laties GG (1963) Nicotinamide adenine dinucleotide in potato tuber slices in relation to respiratory changes with age. Plant Physiol 38:498–500.

    PubMed  CAS  Google Scholar 

  • Hill R, Bhagvat K(1939) Cytochrome oxidase from flowering plants Nature (London):143.

    Google Scholar 

  • Hodges TK, Hanson JB (1967) Energy-linked reactions of plant mitochondria. Curr Top Bionenerg 2:65–98.

    Google Scholar 

  • Humphreys TE, Conn EE (1956) Oxidation of reduced diphosphopyridine nucleotide by lupin mitochondria. Arch Biochem Biophys 60:226–243.

    PubMed  CAS  Google Scholar 

  • Huq S, Palmer JM (1978) The involvement and possible role of quinone in cyanide-resistant respiration. In: Ducet G, Lance C (eds) Plant mitochondria. Elsevier/North Holland Biomedical Press, Amsterdam, New York. pp 225–232.

    Google Scholar 

  • Ikuma H (1972) Electron transport in plant respiration. Annu Rev Plant Physiol 23:419–436.

    CAS  Google Scholar 

  • Ikuma H, Bonner WD (1967) Properties of higher plant mitochondria. III Effects of respiratory chain inhibitors. Plant Physiol 42:1535–1544.

    PubMed  CAS  Google Scholar 

  • Jagow von G, Klingenberg M (1970) Pathways of hydrogen in mitochondria von Sacchar-omyces carlsbergensis. Eur J Biochem 12:583–592.

    Google Scholar 

  • James WO (1953) The terminal oxidases of plant respiration. Biol Rev 28:245–260.

    CAS  Google Scholar 

  • Johnston SP, Moller IM, Palmer JM (1979) The stimulation of exogenous NADH oxidation in Jerusalem artichoke mitochondria by screening of charges on the membranes. FEBS Lett 108:28–32.

    PubMed  CAS  Google Scholar 

  • Jung DW, Hanson JB (1975) Activation of 2,4-dinitrophenol-stimulated ATP-ase activity in cauliflower and corn mitochondria. Arch Biochem Biophys 168:358–368.

    PubMed  CAS  Google Scholar 

  • Kenefick DG, Hanson JB (1966) The contracted state as an energy source for Ca2+ binding and Ca2+ inorganic phosphate accumulation by corn mitochondria. Plant Physiol 41:1601–1609.

    PubMed  CAS  Google Scholar 

  • Koeppe DE, Miller RJ (1972) Oxidation of reduced nicotinamide adenine dinucleotide phosphate by isolated corn mitochondria. Plant Physiol 49:353–357.

    PubMed  CAS  Google Scholar 

  • Kubowitz F (1938) Spaltung und Resynthese der Polyphenoloxydase und des Hämocyanins. Biochem Z 299:32–57.

    CAS  Google Scholar 

  • Lambers H (1980) The physiological significance of cyanide-resistant respiration in higher plants. Plant Cell Physiol 3:293–303.

    CAS  Google Scholar 

  • Lance C, Bonner WD (1968) The respiratory chain components of higher plant mitochondria. Plant Physiol 43:756–766.

    PubMed  CAS  Google Scholar 

  • Lance C, Hobson GE, Young RE, Biale JB (1967) Metabolic processes in cytoplasmic particles of the avocado fruits. IX The oxidation of pyruvate and malate during the climacteric cycle. Plant Physiol 42:471–478.

    PubMed  CAS  Google Scholar 

  • Laties GG (1953) The dual role of adenylate in the mitochondrial oxidations of the higher plant. Physiol Plant 6:199–214.

    CAS  Google Scholar 

  • Lehninger AL (1951) Phosphorylation coupled to oxidation of dihydrodiphosphopyridine nucleotides. J Biol Chem 190:345–359.

    PubMed  CAS  Google Scholar 

  • Lehninger AL (1955) Oxidative phosphorylation. Harvey Lect Ser 49:176–215.

    Google Scholar 

  • Levy H, Schade AL (1948) Terminal oxidase systems of potato tuber respiration. Arch Biochem 19:273–286.

    PubMed  CAS  Google Scholar 

  • Lieberman M, Baker JE (1965) Respiratory electron transport. Annu Rev Plant Physiol 16:343–382.

    CAS  Google Scholar 

  • Lips SH, Biale JB (1966) Stimulation of oxygen uptake by electron transfer inhibitors. Plant Physiol 41:797–802.

    PubMed  CAS  Google Scholar 

  • Lockhart EE (1939) Diaphorase (coenzyme factor). Biochem J 33:613–617.

    PubMed  CAS  Google Scholar 

  • Martin EM, Morton RK (1956) Enzymatic properties of microsomes and mitochondria from silver beet. Biochem J 62:696–704.

    PubMed  CAS  Google Scholar 

  • Marx R, Brinkman K (1978) Characteristics of rotenone-insensitive oxidation of matrix NADH by broad-bean mitochondria. Planta 142:83–90.

    CAS  Google Scholar 

  • Marx R, Brinkman K (1979) Effect of temperature on the pathways of NADH oxidation in broad-bean mitochondria. Planta 144:359–365.

    CAS  Google Scholar 

  • Miller RJ, Dumford SW, Koeppe DE, Hanson JB (1970) Divalent cation stimulation of substrate oxidation by corn mitochondria. Plant Physiol 45:649–653.

    PubMed  CAS  Google Scholar 

  • Millerd A, Bonner J, Axelrod B, Bandurski R (1951) Oxidative and phosphorylative activity of plant mitochondria. Proc Natl Acad Sci USA 37:855–862.

    PubMed  CAS  Google Scholar 

  • Moller IM, Palmer JM (1981a) Properties of the oxidation of exogenous NADH and NADPH by plant mitochondria. Evidence against a Phosphatase or nicotinamide nucleotide transhydrogenase being responsible for NADPH oxidation. Biochim Biophys Acta 681:225–233.

    Google Scholar 

  • Moller IM, Palmer JM (1981b) The inhibition of exogenous NAD(P)H oxidation in plant mitochondria by chelators and mersalyl as a function of pH. Physiol Plant 53:413–420.

    Google Scholar 

  • Moller IM, Palmer JM (1981c) Charge screening by cations affects the conformation of the mitochondrial inner membrane. A study of exogenous NAD(P)H oxidation in plant mitochondria. Biochem J 195:583–588.

    PubMed  CAS  Google Scholar 

  • Moller IM, Palmer JM (1982) Direct evidence for the presence of a rotenone-resistant NADH dehydrogenase on the inner surface of the inner membrane of plant mitochondria. Physiol Plant 54:267–274.

    Google Scholar 

  • Moller IM, Johnston SP, Palmer JM (1981) A specific role for Ca2+ in the oxidation of exogenous NADH by Jerusalem artichoke (Helianthus tuberosus) mitochondria. Biochem J 194:487–495.

    PubMed  CAS  Google Scholar 

  • Moller IM, Palmer JM, Johnston SP (1983) Inhibition of exogeous NADH oxidation in plant mitochondria by chlorotetracycline in the presence of calcium ions. Biochim Biophys Acta 125:289–291.

    Google Scholar 

  • Moore AL, Ackerman KEO (1982) Ca2+ stimulation of the external NADH dehydrogenase in Jerusalem artichoke (Helianthus tuberosus) mitochondria. Biochem Biophys Res Commun 109:513–517.

    PubMed  CAS  Google Scholar 

  • Moore AL, Rich PR (1980) The bioenergetics of plant mitochondria. Trends Biochem Sci 5:284–288.

    CAS  Google Scholar 

  • Moore AL, Linnett PE, Beechey RB (1980) Dibutylchloromethyltin chloride, a potent inhibitor of electron transport in plant mitochondria. J Bioenerg Biomembr 12:309–322.

    PubMed  CAS  Google Scholar 

  • Moreau F (1978) The electron transport system of the outer membranes of plant mito-chondria. In: Ducet G, Lance C (eds) Plant mitochondria. Elsevier/North Holland Biomedical Press, Amsterdam New York, pp 77–84.

    Google Scholar 

  • Moreau F, Lance C (1972) Isolément et propriétés des membranes externes et internes de mitochondries végétales. Biochemie 54:1335–1348.

    CAS  Google Scholar 

  • Nash D, Wiskich JT (1983) Properties of substantially chlorophyll-free pea leaf mitochondria prepared by sucrose density gradient separation. Plant Physiol 71:627–634.

    PubMed  CAS  Google Scholar 

  • Neuberger M, Douce R (1978) Transport of NAD+ through the inner membrane of plant mitochondria. In: Ducet G, Lance C (eds) Plant mitochondria. Elsevier/North Holland Biomédical Press, Amsterdam New York. pp 109–116.

    Google Scholar 

  • Newcomer EH (1940) Mitochondria in plants. Bot Rev 6:85–147.

    Google Scholar 

  • Ohnishi T, Kawaguchi K, Hagihara B (1966) Preparation and some properties of yeast mitochondria. J Biol Chem 241:1797–1806.

    PubMed  CAS  Google Scholar 

  • Packer L, Murakami S, Mehard CW (1970) Ion transport in chloroplasts and plant mitochondria. Annu Rev Plant Physiol 21:271–304.

    CAS  Google Scholar 

  • Palmer JM (1979) The “uniqueness” of plant mitochondria. Biochem Soc Trans 7:246–252.

    PubMed  CAS  Google Scholar 

  • Palmer JM, Arron GP (1976) The influence of exogenous nicotinamide adenine dinucleo-tide on the oxidation of malate by Jerusalem artichoke mitochondria. J Exp Bot 27:418–430.

    CAS  Google Scholar 

  • Palmer JM, Coleman JOD (1974) Multiple pathways of NADH oxidation in the mitochondrion. Horizons Biochem Biophys 1:220–260.

    CAS  Google Scholar 

  • Palmer JM, Moller IM (1982) Regulation of NAD(P)H dehydrogenases in plant mitochondria. Trends Biochem Sci 7:258–261.

    CAS  Google Scholar 

  • Palmer JM, Passam HC (1971) The oxidation of NADH by plant mitochondria. Biochem J 122:16–17p.

    Google Scholar 

  • Palmer JM, Schwitzguebel JP, Moller IM (1982) Regulation of malate oxidation in plant mitochondria. Response to rotenone and exogenous NAD. Biochem J 208:703–711.

    PubMed  CAS  Google Scholar 

  • Philips ML, Williams GR (1973) Effects of 2-butylmalonate, 2-phenylsuccinate, benzyl-malonate and p-iodobenzylmalonate on the oxidation of substrates by mung bean mitochondria. Plant Physiol 51:225–228.

    Google Scholar 

  • Ragan CI (1980) The molecular organisation of NADH dehydrogenase. Subcellular Biochemistry Vol 7. Plenum, New York, pp 267–307.

    Google Scholar 

  • Ravanel P, Tissut M, Douce R (1981) Effects of flavone on the oxidative properties of intact plant mitochondria. Phytochemistry 20:2101–2103.

    CAS  Google Scholar 

  • Rich PR, Bendall DS (1975) Cytochrome components of plant microsomes. Eur J Biochem 55:333–341.

    PubMed  CAS  Google Scholar 

  • Rustin P, Moreau F, Lance C (1980) Malate oxidation in plant mitochondria via malic enzyme and the cyanide-insensitive electron transport pathway. Plant Physiol 66:457–462.

    PubMed  CAS  Google Scholar 

  • Rydstrom J (1977) Energy-linked nicotinamide nucleotide transhydrogenases. Biochem Biophys Acta 463:155–184.

    PubMed  CAS  Google Scholar 

  • Schatz G, Racker E, Tyler DD, Gonze J, Estabrook RW (1966) Studies of the DPNH-cytochrome b segment of the respiratory chain of bakers yeast. Biochem Biophys Res Commun 22:585–590.

    PubMed  CAS  Google Scholar 

  • Schneider H, Lemasters JJ, Hochli M, Hackenbrook CR (1980) Liposome-mitochondrial inner membrane fusion. Lateral diffusion of integral electron transfer components. J Biol Chem 255:3748–3756.

    PubMed  CAS  Google Scholar 

  • Smillie RM (1955) Enzymatic activity of particles isolated from various tissues of the pea plant. Aust J Biol Sci 8:186–195.

    CAS  Google Scholar 

  • Sottibandhu R, Palmer JM (1975) The activation of non-phosphorylating electron transport by adenine nucleotides in Jerusalem artichoke (Helianthus tuberosus) mitochondria. Biochem J 152:637–645.

    Google Scholar 

  • Sottocasa GL, Kuylenstierna B, Ernster L, Bergstrand A (1967) An electron transport system associated with the outer membrane of liver mitochondria. J Cell Biol 32:415–438.

    PubMed  CAS  Google Scholar 

  • Storey BT (1971) The respiratory chain of plant mitochondria. X Oxidation-reduction potentials of the flavoproteins of skunk cabbage mitochondria. Plant Physiol 48:493–497.

    PubMed  CAS  Google Scholar 

  • Storey BT (1980) Electron transport and energy coupling in plant mitochondria. In: Davies D (ed) The biochemistry of plants, vol II. A comprehensive treatise. Academic Press, London New York. pp 125–197.

    Google Scholar 

  • Strittmatter P (1963) Microsomal cytochrome b5 and cytochrome b5 reductase. In: Boyer PD, Lardy H, Myrbäck K (eds) The enzymes, vol VIII. Academic Press, London New York. pp 113–145.

    Google Scholar 

  • Strittmatter P (1966) NADH-cytochrome b5 reductase. In: Slater EC (ed) Flavins and flavoproteins. Elsevier, Amsterdam. pp 325–329.

    Google Scholar 

  • Theorell H (1935) Reines Cytochrom C. Vorläufige Mitteilung. Biochem Z 279:463–464.

    CAS  Google Scholar 

  • Tobin A, Djerdjour B, Journet E, Neuberger M, Douce R (1980) Effect of NAD+ on malate oxidation in intact plant mitochondria. Plant Physiol 66:225–229.

    PubMed  CAS  Google Scholar 

  • Tomlinson PF, Moreland DE (1975) Cyanide-resistant respiration of sweet potato mitochondria. Plant Physiol 55:365–369.

    PubMed  CAS  Google Scholar 

  • Warburg O, Christian W (1932) Über ein neues Oxydationsferment und sein Absorptionsspektrum. Biochem Z 254:438–458.

    CAS  Google Scholar 

  • Whatley FR (1951) Coenzymes in plants. New Phytol 50:244–257.

    CAS  Google Scholar 

  • Wilson RH, Hanson JB (1969) The effect of respiratory inhibitors on NADH, succinate and malate oxidation in corn mitochondria. Plant Physiol 44:1335–1341.

    PubMed  CAS  Google Scholar 

  • Wilson SB, Bonner WD (1970) Preparation and some properties of submitochondrial particles from tightly coupled mung bean mitochondria. Plant Physiol 46:25–30.

    PubMed  CAS  Google Scholar 

  • Wiskich JT, Day DA (1982) Malate oxidation, rotenone resistance and alternative path activity in plant mitochondria. Plant Physiol 70:959–964.

    PubMed  CAS  Google Scholar 

  • Zeltich I, Barber GA (1960) Oxidative phosphorylation and glycolate oxidation by particles from spinach leaves. Plant Physiol 35:205–209.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Palmer, J.M., Ward, J.A. (1985). The Oxidation of NADH by Plant Mitochondria. In: Douce, R., Day, D.A. (eds) Higher Plant Cell Respiration. Encyclopedia of Plant Physiology, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70101-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70101-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70103-0

  • Online ISBN: 978-3-642-70101-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics