Skip to main content

Activation of Visual Pigment: Chromophore Structure and Function

  • Conference paper
The Molecular Mechanism of Photoreception

Part of the book series: Dahlem Workshop Reports ((DAHLEM LIFE,volume 34))

Abstract

Besides the “classical” chromophores retinal (visual pigment: rhodopsin) and 3-dehydroretinal (visual pigment: porphyropsin), recently a new chromophore has been found in several insect groups: 3-hydroxyretinal (visual pigment: xanthopsin). Evolutionary aspects are considered — the first interaction of light with the photoreceptor must not necessarily take place at the Schiff base-linked chromophore. In many photoreceptors, e.g., of many fly species, light can be absorbed by a sensitizing pigment which then transfers energy (Förster mechanism) to the Schiff base-linked chromophore. This chromophore is then isomerized and leads to excitation of the receptor. The sensitizing pigment in higher flies is identified as 3-hydroxyretinol, and in one more primitive fly species (Simuliid) most likely as retinol. Functional consequences of sensitization are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akita, H.; Tanis, S.P.; Adams, M.; Balogh-Nair, V.; and Nakanishi, K. 1980. Nonbleachable rhodopsin retaining the full natural chromophore. J. Am. Chem. Soc. 102: 6370–6372.

    Article  CAS  Google Scholar 

  2. Boschek, C.B., and Hamdorf, K. 1976. Rhodopsin particles in the photoreceptor membrane of an insect. Z. Naturforsch. 31c: 763.

    CAS  Google Scholar 

  3. Burkhardt, D. 1962. Spectral sensitivity and other response characteristics of single visual cells in the arthropod eye. Symp. Soc. Exp. Biol. 16: 86–109.

    Google Scholar 

  4. Dartnall, H.J.A. 1952. Visual pigment 467, a photosensitive pigment present in tench retinae. J. Physiol. 116: 257–289.

    PubMed  CAS  Google Scholar 

  5. Förster, T. 1951. Fluoreszenz organischer Verbindungen. Göttingen: Vandenhoeck und Ruprecht.

    Google Scholar 

  6. Franceschini, N.; Kirschfeld, K.; and Minke, B. 1981. Fluorescence of photoreceptor cells observed in vivo. Science 213: 1264–1267.

    Article  PubMed  CAS  Google Scholar 

  7. Gemperlein, R.; Paul, R.; Lindauer, E.; and Steiner, A. 1980. UV fine structure of the spectral sensitivity of flies visual cells. Naturwiss. 67: 565–566.

    Article  Google Scholar 

  8. Goldsmith, T.H.; Barker, R.J.; and Cohen, C.F. 1964. Sensitivity of visual receptors of carotenoid-depleted flies: a vitamin A deficiency in an invertebrate. Science 146: 65–67.

    Article  PubMed  CAS  Google Scholar 

  9. Guo, A.K. 1980. Elektrophysiologische Untersuchungen zur Spektral-und Polarisations-Empfindlichkeit der Sehzellen von Calliphora erythrocephala II. Sci. Sin. XXIII: 1461–1468.

    Google Scholar 

  10. Guo, A.K. 1981. Elektrophysiologische Untersuchungen zur Spektral-und Polarisationsempfindlichkeit an den Sehzellen von Calliphora erythrocephala III. Sci. Sin. XXIV: 272–286.

    Google Scholar 

  11. Hamdorf, K. 1979. The physiology of invertebrate visual pigments. In Handbook of Sensory Physiology, ed. H. Autrum, vol. VII/6A, pp. 145–224. Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  12. Hamdorf, K., and Kirschfeld, K. 1980. Reversible events in the transduction process of photoreceptors. Nature 283: 859–860.

    Article  PubMed  CAS  Google Scholar 

  13. Hamdorf, K.; Paulsen, R.; and Schwemer, J. 1973. Photoregeneration and sensitivity control of photoreceptors of invertebrates. In Biochemistry and Physiology of Visual Pigments, ed. H. Langer, pp. 155–166. Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  14. Hardie, R.C. 1978. Peripheral visual function in the fly. Ph.D. Thesis, Australian National University, Canberra.

    Google Scholar 

  15. Hardie, R.C. 1984. Properties of photoreceptors R7 and R8 in dorsal marginal ommatidia in the compound eyes of Musca and Calliphora. J. Comp. Physiol. A 154: 157–165.

    Article  Google Scholar 

  16. Hardie, R.C.; Franceschini, N.; and McIntyre, P.D. 1979. Electrophysiological analysis of fly retina. II. Spectral and polarisation sensitivity in R7 and R8. J. Comp. Physiol. 133: 23–39.

    Google Scholar 

  17. Hardie, R.C.; Franceschini, N.; Ribi, W.; and Kirschfeld, K. 1981. Distribution and properties of sex-specific photoreceptors in the fly Musca domestica. J. Comp. Physiol. 145: 139–152.

    Article  Google Scholar 

  18. Hardie, R.C., and Kirschfeld, K. 1983. Ultraviolet sensitivity of fly photoreceptors R7 and R8: evidence for a sensitising function. Biophys. Struct. Mech. 9: 171–180.

    Article  Google Scholar 

  19. Horridge, G.A., and Mimura, K. 1975. Fly photoreceptors. I. Physical separation of two visual pigments in Calliphora retinula cells 1-6. Proc. Roy. Soc. Lond. B 190: 211–224.

    Article  CAS  Google Scholar 

  20. Kirschfeld, K. 1979. The function of photostable pigments in fly photoreceptors. Biophys. Struct. Mech. 5: 117–128.

    Article  CAS  Google Scholar 

  21. Kirschfeld, K. 1982. Carotenoid pigments: their possible role in protecting against photooxidation in eyes and photoreceptor cells. Proc. Roy. Soc. Lond. B 216: 71–85.

    Article  CAS  Google Scholar 

  22. Kirschfeld, K.; Feiler, R.; and Franceschini, N. 1978. A photostable pigment within the rhabdomere of fly photoreceptors no. 7. J. Comp. Physiol. 125: 275–284.

    CAS  Google Scholar 

  23. Kirschfeld, K.; Feiler, R.; Hardie, R.; Vogt, K.; and Franceschini, N. 1983. The sensitizing pigment in fly photoreceptors. Properties and candidates. Biophys. Struct. Mech. 10: 81–92.

    Article  CAS  Google Scholar 

  24. Kirschfeld, K.; Franceschini, N.; and Minke, B. 1977. Evidence for a sensitising pigment in fly photoreceptors. Nature 269: 386–390.

    Article  PubMed  CAS  Google Scholar 

  25. Krinsky, N.I. 1968. The protective function of carotenoid pigments. Photophysiology 3: 123–195.

    CAS  Google Scholar 

  26. Kristensen, N.P. 1975. The phylogeny of hexapod “orders”. A critical review of recent accounts. Z. Zool. Syst. Evol. Forsch. 13: 1–44.

    Article  Google Scholar 

  27. Kruizinga, B.; Kamman, R.L.; and Stavenga, D.G. 1983. Laser induced visual pigment conversions in fly photoreceptor. Measured in vivo. Biophys. Struct. Mech. 9: 299–307.

    Article  CAS  Google Scholar 

  28. Lythgoe, J.N. 1972. The adaptation of visual pigments to the photic environment. In Handbook of Sensory Physiology, ed. H.J.A. Dartnall, vol. VII/I, pp. 566–603. Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  29. Minke, B., and Kirschfeld, K. 1979. The contribution of a sensitizing pigment to the photosensitivity spectra of fly rhodopsin and metarhodopsin. J. Gen. Physiol. 73: 517–540.

    Article  PubMed  CAS  Google Scholar 

  30. Morton, R.A. 1972. The chemistry of the visual pigments. In Handbook of Sensory Physiology, ed. H.J.A. Dartnall, vol. VII/I, pp. 33–68. Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  31. Ong, D.E., and Chytil, F. 1978. Cellular retinol-binding protein from rat liver. J. Biol. Chem. 253: 828–832.

    PubMed  CAS  Google Scholar 

  32. Ostroy, S.E. 1978. Characteristics of Drosophila rhodopsin in the wildtype and norpA vision transduction mutants. J. Gen. Physiol. 72: 714–732.

    Article  Google Scholar 

  33. Paulsen, R., and Schwemer, J. 1972. Studies on the insect visual pigment sensitive to ultraviolet light: retinal as the chromophoric group. Biochim. Biophys. Acta 283: 520–529.

    Article  PubMed  CAS  Google Scholar 

  34. Paulsen, R., and Schwemer, J. 1979. Vitamin A deficiency reduces the concentration of visual pigment protein within blowfly photoreceptor membranes. Biochim. Biophys. Acta 557: 385–390.

    Article  PubMed  CAS  Google Scholar 

  35. Shaw, S.R. 1968. Organization of the locust retina. Symp. Zool. Soc. Lond. 23: 35–163.

    Google Scholar 

  36. Shichi, H. 1983. Biochemistry of Vision. New York: Academic Press.

    Google Scholar 

  37. Snyder, A.W., and Pask, C. 1973. Spectral sensitivity of dipteran retinula cells. J. Comp. Physiol. 84: 59–76.

    Article  Google Scholar 

  38. Stark, W.S., and Zitzmann, W.G. 1976. Isolation of adaptation mechanisms and photopigment spectra by vitamin A deprivation in Drosophila. J. Comp. Physiol. 105: 15–27.

    Article  CAS  Google Scholar 

  39. Stavenga, D.G.; Zantema, A.; and Kuiper, J.W. 1973. Rhodopsin processes and the function of the pupil mechanism in flies. In Biochemistry and Physiology of Visual Pigments, ed. H. Langer, pp. 175–180. Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  40. Vogt, K. 1983. Is the fly visual pigment a rhodopsin? Z. Naturforsch. 38c: 329–333.

    CAS  Google Scholar 

  41. Vogt, K. 1984. The chromophore of the visual pigment in some insect orders. Z. Naturforsch. 39c: 196–197.

    Google Scholar 

  42. Vogt, K. 1984. Zur Verteilung von Rhodopsin und Xanthopsin bei Insekten. (Verh. Dtsch. Zool. Ges.) Stuttgart: Gustav Fischer.

    Google Scholar 

  43. Vogt, K., and Kirschfeld, K. 1982. Die Quantenausbeute der Energieübertragung von Photorezeptoren von Fliegen, p. 337. (Verh. Dtsch. Zool. Ges.) Stuttgart: Gustav Fischer.

    Google Scholar 

  44. Vogt, K., and Kirschfeld, K. 1983. C40 carotinoide in Fliegenaugen. (Verh. Dtsch. Zool. Ges.) Stuttgart: Gustav Fischer.

    Google Scholar 

  45. Vogt, K., and Kirschfeld, K. 1983. Sensitizing pigment in the fly. Biophys. Struct. Mech. 9: 319–328.

    Article  CAS  Google Scholar 

  46. Vogt, K., and Kirschfeld, K. 1984. Chemical identity of the chromophores of fly visual pigment. Naturwiss. 71: 211–213.

    Article  CAS  Google Scholar 

  47. Wada, S. 1974. Spezielle randzonale Ommatidien von Calliphora erythroeephala Meig. (Diptera: Calliphoridae): Architektur der zentralen Rhabdomeren-Kolumne und Topographie im Komplexauge. Intl. J. Insect Morphol. Embryol. 3: 397–424.

    Article  Google Scholar 

  48. Wald, G. 1936. Carotenoids and the visual cycle. J. Gen. Physiol. 19: 351–371.

    Article  Google Scholar 

  49. Wolken, J.J.; Bowness, J.M.; and Scheer, I.J. 1960. The visual complex of the insect: Retinene in the housefly. Biochim. Biophys. Acta 43: 531–537.

    Article  PubMed  CAS  Google Scholar 

  50. Zhu, H., and Kirschfeld, K. 1984. Protection against photodestruction in fly photoreceptors by carotenoid pigments. J. Comp. Physiol. A 154: 153–156.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. Stieve

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Kirschfeld, K. (1986). Activation of Visual Pigment: Chromophore Structure and Function. In: Stieve, H. (eds) The Molecular Mechanism of Photoreception. Dahlem Workshop Reports, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70444-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70444-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70446-8

  • Online ISBN: 978-3-642-70444-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics