Skip to main content

Part of the book series: Advances in Anatomy Embryology and Cell Biology ((ADVSANAT,volume 97))

  • 70 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman JS, Tyrer NM (1977) The locust wing hinge stretch receptors. II. Variation, alternative pathways and “mistakes” in the central arborizations. J Comp Neurol 172:431–440

    PubMed  CAS  Google Scholar 

  • Angevine Jr JB (1970) Critical cellular events in the shaping of neural centers. In: Schmitt FO, Quarton GC, Melnechuk T, Adelman G (eds) The neurosciences. Second study program. Rockefeller University Press, New York, pp 62–72

    Google Scholar 

  • Ariens Kappers CU, Huber GC, Crosby EC (1936) The comparative anatomy of the nervous system of the vertebrates, including man (3 vols). Macmillan, London

    Google Scholar 

  • Armstrong E (1983) Relative brain size and metabolism in mammals. Science 220:1302–1304

    PubMed  CAS  Google Scholar 

  • Benjamin RM, Jackson JC, Golden GT, West CHK (1982) Sources of olfactory input to opossum mediodorsal nucleus identified by horseradish peroxidase and autoradiographic methods. J Comp Neurol 207:358–368

    PubMed  CAS  Google Scholar 

  • Berkley KJ (1980) Spatial relationships between the terminations of somatic sensory and motor pathways in the rostral brainstem of cats and monkeys. I. Ascending somatic sensory inputs to lateral diencephalon. J Comp Neurol 193:283–317

    PubMed  CAS  Google Scholar 

  • Bodian D (1939) Studies on the diencephalon of the Virginia opossum. Part I. The nuclear pattern in the adult. J Comp Neurol 71:259–324

    Google Scholar 

  • Bodian D (1940) Studies on the diencephalon of the Virginia opossum. Part II. The fiber connections in normal and experimental material. J Comp Neurol 72:207–298

    Google Scholar 

  • Bodian D (1942) Studies on the diencephalon of the Virginia opossum. Part III. The thalamocortical projection. J Comp Neurol 77:525–576

    Google Scholar 

  • Book K, Ganchrow J, Morest DK (1985) Migration by perikaryal translocation from the rhombic lip in the chick embryo medulla. Proc Soc Neurosci 11:1063

    Google Scholar 

  • Brunjes PC (1983) Olfactory bulb maturation in Acomys cahirinus: is neural growth similar in precocial and altricial murids? Dev Brain Res 8:335–341

    Google Scholar 

  • Bullock TH (1945) Problems in the comparative study of brain waves. Yale J Biol Med 17:657–679

    PubMed  CAS  Google Scholar 

  • Bullock TH (1984) Comparative neuroscience holds promise for quiet revolutions. Science 225:473–478

    PubMed  CAS  Google Scholar 

  • Bullock TH, Horridge GA (1965) Structure and function in the nervous systems of invertebrates (2 vols). Freeman, San Francisco

    Google Scholar 

  • Bullock TH, Bodznick DA, Northcutt RG (1983) The phylogenetic distribution of electroreception: evidence for convergent evolution of a primitive vertebrate sense modality. Brain Res Rev 6:25–46

    Google Scholar 

  • Campbell CBG (1966) The relationships of the tree shrews: the evidence of the nervous system. Evolution 20:276–281

    Google Scholar 

  • Campbell CBG, Hodos W (1970) The concept of homology and the evolution of the nervous system. Brain Behav Evol 3:353–367

    PubMed  CAS  Google Scholar 

  • Chu HN (1932 a) The fiber connections of the diencephalon of the opossum, Didelphis virginiana. Monogr Nat Res Inst Psychol (Nanking) 3:1–34

    Google Scholar 

  • Chu HN (1932 b) The cell masses of the diencephalon of the opossum, Didelphis virginiana. Monogr Nat Res Inst Psychol (Nanking) 3:1–43

    Google Scholar 

  • Clark JM, Ulinski PS (1984) A Golgi study of anterior dorsal ventricular ridge in the alligator, Alligator mississippiensis. J Morphol 179:153–174

    Google Scholar 

  • Clemens WA (1968) Origin and early evolution of marsupials. Evolution 22:1–18

    Google Scholar 

  • Colbert EH (1969) Evolution of the vertebrates, 2nd edn. Wiley, New York

    Google Scholar 

  • Coleman J, Diamond IT, Winer JA (1977) The visual cortex of the opossum: the retrograde transport of horseradish peroxidase to the lateral geniculate and lateral posterior nuclei. Brain Res 137:233–252

    PubMed  CAS  Google Scholar 

  • Cowley AR (1973) The nuclei of the cochlear nerve of the red kangaroo, Megaleia rufus. J Hirnforsch 14:287–301

    PubMed  CAS  Google Scholar 

  • Darwin C (1872) The origin of species by means of natural selection or the preservation of favored races in the struggle for life, 6th edn. John Murray, London

    Google Scholar 

  • Davis NT (1983) Serial homologies of the motor neurons of the dorsal intersegmental muscles of the cockroach, Periplaneta americana (L.) J Morphol 176:197–210

    Google Scholar 

  • Diamond IT (1973) The evolution of the tectal pulvinar system in mammals: structural and behavioral studies of the visual system. Symp Zool Soc Lond 33:205–233

    Google Scholar 

  • Diamond IT, Utley JD (1963) Thalamaic retrograde degeneration study of sensory cortex in opossum. J Comp Neurol 120:129–160

    PubMed  CAS  Google Scholar 

  • Ebbesson SOE, Jane JA, Schroeder DM (1972) A general view of major interspecific variations in thalamic organization. Brain Behav Evol 6:92–130

    PubMed  CAS  Google Scholar 

  • Ebner FF (1967) Medial geniculate projections to telencephalon of opossum. Anat Rec 157:238–239

    Google Scholar 

  • Ebner FF (1969) A comparison of primitive forebrain organization in metatherian and eutherian mammals. Ann NY Acad Sci 167:241–257

    Google Scholar 

  • Falk D (1983) Cerebral cortices of east African early hominids. Science 221:1072–1074

    PubMed  CAS  Google Scholar 

  • Forel A (1872) Beitrage zur Kenntnis des Thalamus opticus und der ihn umgebenden Gebilde bei den Saugetieren. SB Akad Wiss Wien 66(3): 25–54

    Google Scholar 

  • Fung Y-L (1953) A history of Chinese philosophy, vol 2. Princeton University Press, Princeton

    Google Scholar 

  • Gans C (1969) Some questions and problems in morphological comparison. Ann NY Acad Sci 167:506–513

    Google Scholar 

  • Gans C, Northcutt RG (1983) Neural crest and the origin of vertebrates: a new head. Science 220:268–274

    PubMed  CAS  Google Scholar 

  • Ghiselin MT (1969) The triumph of the Darwinian method. University of California Press, Berkeley

    Google Scholar 

  • Ghiselin MT (1976) The nomenclature of correspondence: a new look at “homology” and “analogy”. In: Masterton RB, Hodos W, Jerison H (eds) Evolution, brain, and behavior: persistent problems. Lawrence Erlbaum, Hillsdale, pp 129–142

    Google Scholar 

  • Graybiel AM (1972) Some fiber pathways related to the posterior thalamic region in the cat. Brain Behav Evol 6:363–393

    PubMed  CAS  Google Scholar 

  • Haight JR, Neylon L (1978 a) An atlas of the dorsal thalamus of the marsupial brush-tailed possum, Trichosurus vulpecula. J Anat 126:225–245

    PubMed  CAS  Google Scholar 

  • Haight JR, Neylon L (1978 b) Morphological variation in the brain of the marsupial brush-tailed possum, Trichosurus vulpecula. Brain Behav Evol 15:415–445

    Google Scholar 

  • Haight JR, Neylon L (1981) An analysis of some thalamic projections to parietofrontal neocortex in the marsupial native cat, Dasyurus viverrinus (Dasyuridae). Brain Behav Evol 19:193–204

    PubMed  CAS  Google Scholar 

  • Haines DE, Swindler DR (1972) Comparative neuroanatomical evidence and the taxonomy of the tree shrews (Tupaia). J Hum Evol 1:407–420

    Google Scholar 

  • Hanson ED (1977) The origin and early evolution of animals. Wesleyan University Press and Pitman. Middletown, CT and London

    Google Scholar 

  • Hazlett JC, Hazlett LD (1977) Long axon neurons in the parafascicular posterolateral nuclei of the opossum: a Golgi study. Brain Res 136:543–546

    PubMed  CAS  Google Scholar 

  • Hazlett JC, Dom R, Martin GF (1972) Spino-bulbar, spino-thalamic and medial lemniscal connections in the American opossum, Didelphis marsupialis virginiana. J Comp Neurol 146:95–118

    PubMed  CAS  Google Scholar 

  • Heaton MB, Harth MS (1974) Developing visual function in the pigeon embryo with comparative reference to other avian species. J Comp Physiol Psychol 86:151–156

    PubMed  CAS  Google Scholar 

  • Herrick CJ (1948) The brain of the tiger salamander (Ambystoma tigrinum). University of Chicago Press, Chicago

    Google Scholar 

  • Hickey TL, Guillery RW (1979) Variability of laminar patterns in the human lateral geniculate nucleus. J Comp Neurol 183:221–246

    PubMed  CAS  Google Scholar 

  • Hornet T (1933) Vergleichend anatomische Untersuchungen uber das Corpus geniculatum mediate. Arb Neurol Inst Univ Wien 35:76–92

    Google Scholar 

  • Horridge GA (ed) (1974) The compound eye and vision of insects. Clarendon, Oxford

    Google Scholar 

  • Jerison HJ (1973) Evolution of the brain and intelligence. Academic, New York

    Google Scholar 

  • Jhaveri S, Morest DK (1982) Neuronal architecture in nucleus magnocellularis of the chicken auditory system with observations on nucleus laminaris: a light and electron microscope study. Neuroscience 7:809–836

    PubMed  CAS  Google Scholar 

  • Johnson JI, Kirsch JAW, Switzer III RC (1982a) Phylogeny through brain traits: fifteen characters which adumbrate mammalian genealogy. Brain Behav Evol 20:72–83

    PubMed  CAS  Google Scholar 

  • Johnson JI Switzer III RC, Kirsch JAW (1982b) Phylogeny through brain traits: categorizing characters in contemporary mammals. Brain Behav Evol 20: 92–117

    Google Scholar 

  • Kaelber WW, Yarmat AJ, Aflfi AK (1982) A comparison of the diencephalic and subcortical telencephalic areas of the brain of Felis jaguorondi and Felis domestica. J Hirnforsch 23:709–719

    PubMed  CAS  Google Scholar 

  • Kawamura S, Sprague JM, Niimi K (1974) Corticofugal projections from the visual cortices to the thalamus, pretectum and superior colliculus in the cat. J Comp Neurol 158:339–362

    PubMed  CAS  Google Scholar 

  • King DG, Valentino KL (1983) On neuronal homology: a comparison of similar axons in Musca, Sarcophaga ,and Drosophila (Diptera: Schizophora). J Comp Neurol 219:1–9

    PubMed  CAS  Google Scholar 

  • Kremers JWPM, Nieuwenhuys R (1979) Topological analysis of the brain stem of the crossopterygian fish Latimeria chalumnae. J Comp Neurol 187:613–638

    PubMed  CAS  Google Scholar 

  • Kudo M, Niimi K (1978) Ascending projections of the inferior colliculus onto medial geniculate body of the cat studied by anterograde and retrograde tracing techniques. Brain Res 155:113–117

    PubMed  CAS  Google Scholar 

  • Kudo M, Frost SB, Glendenning KK, Masterton RB (1984) Telencephalic projections of the medial geniculate body in the opossum (Didelphis virginiana). Proc Soc Neurosci 10:1149

    Google Scholar 

  • Kuhlenbeck H (1935) Über die morphologische Stellung des Corpus geniculatum mediale. Anat Anz 81:28–37

    Google Scholar 

  • Kuypers HGJM (1958 a) Cortico-bulbar connexions to the pons and medulla oblongata in the cat and man. Brain 81:364–388

    PubMed  CAS  Google Scholar 

  • Kuypers HGJM (1958 b) Some projections from the peri-central cortex to the pons and lower brain stem in monkey and chimpanzee. J Comp Neurol 110:221–255

    PubMed  CAS  Google Scholar 

  • Larsell O (1970) The comparative anatomy and histology of the cerebellum from monotremes through apes. In: Jansen J (ed) Minneapolis: University of Minnesota Press, Minneapolis

    Google Scholar 

  • Laxson LC, King JS (1983 a) The development of the Purkinje cell in the cerebellar cortex of the opossum. J Comp Neurol 214:290–308

    PubMed  CAS  Google Scholar 

  • Laxson LC, King JS (1983 b) The formation and growth of the cortical layers in the cerebellum of the opossum. Anat Embryol (Berl) 167:391–409

    CAS  Google Scholar 

  • Le Gros Clark WE (1932) The structure and connections of the thalamus. Brain 55:406–470

    Google Scholar 

  • Le Gros Clark WE (1933) The medial geniculate body and the nuclei isthmi. J Anat 67:536–548

    Google Scholar 

  • Lende RA (1963) Cerebral cortex: a sensory-motor amalgam in the Marsupialia. Science 141:730–732

    PubMed  CAS  Google Scholar 

  • Lewis OJ (1983) The evolutionary emergence and refinement of the mammalian pattern of foot architecture. J Anat 137:21–45

    PubMed  Google Scholar 

  • Llinás R (ed) (1969) Neurobiology of cerebellar evolution and development. American Medical Assn, Chicago

    Google Scholar 

  • Llinás R, Hillman DE (1969) Physiological and morphological organization of the cerebellar circuits in various vertebrates. In: Llinás R (ed) Neurobiology of cerebellar evolution and development. American Medical Assn, Chicago, pp 43–73

    Google Scholar 

  • Lombard RE, Bolt JR (1979) Evolution of the tetrapod ear: an analysis and reinterpretation. BiolJ Linn Soc 11:19–76

    Google Scholar 

  • Loo YT (1937) The nucleus geniculatus medialis in mammalian brains. Monogr Nat Res Inst Psychol (Nanking) 11:1–37

    Google Scholar 

  • Lorente de Nó R (1938) Architectonics and structure of the cerebral cortex. In: Fulton JG (ed) Physiology of the nervous system. Oxford University Press, London, pp 291–330

    Google Scholar 

  • McCrady Jr E, Wever EG, Bray CW (1937) The development of hearing in the opossum. J Exp Zool 75:503–517

    Google Scholar 

  • McCrady Jr E, Wever EG, Bray CW (1940) A further investigation of the development of hearing in the opossum. J Comp Physiol Psychol 30:17–21

    Google Scholar 

  • Mehler WR (1969) Some neurological species differences -a posteriori. Ann NY Acad Sci 167:424–468

    Google Scholar 

  • Morest DK (1964) The neuronal architecture of the medial geniculate body of the cat. J Anat 98:611–634

    PubMed  CAS  Google Scholar 

  • Morest DK (1965 a) The laminar structure of the medial geniculate body of the cat. J Anat 99:143–160

    PubMed  CAS  Google Scholar 

  • Morest DK (1965 b) The lateral tegmental system of the midbrain and the medial geniculate body: study with Golgi and Nauta methods in cat. J Anat 99:611–634

    PubMed  CAS  Google Scholar 

  • Morest DK (1965 c) Identification of homologous neurons in the posterolateral thalamus of cat and Virginia opossum. Anat Rec 151:390–391

    Google Scholar 

  • Morest DK (1966) The cortical structure of the inferior quadrigeminal lamina of the cat. Anat Rec 154:389

    Google Scholar 

  • Morest DK (1967) Experimental study of the projections of the nucleus of the tractus solitarius and the area postrema in the cat. J Comp Neurol 130:277–300

    PubMed  CAS  Google Scholar 

  • Morest DK (1968) The growth of synaptic endings in the mammalian brain: a study of the calyces of the trapezoid body. Z Anat Entwicklungsgesch 127:201–220

    PubMed  CAS  Google Scholar 

  • Morest DK (1969) The growth of dendrites in the mammalian brain. Z Anat Entwicklungsgesch 128:290–317

    PubMed  CAS  Google Scholar 

  • Morest DK (1970) A study of neurogenesis in the forebrain of opossum pouch young. Z Anat Entwicklungsgesch 130:265–305

    PubMed  CAS  Google Scholar 

  • Morest DK (1971) Dendro-dendritic synapses of cells that have axons: the fine structure of the Golgi type II cell in the medial geniculate body of the cat. Z Anat Entwicklungsgesch 133:216–246

    PubMed  CAS  Google Scholar 

  • Morest DK (1975) Synaptic relationships of Golgi type II cells in the medial geniculate body of the cat. J Comp Neurol 162:157–194

    PubMed  CAS  Google Scholar 

  • Morest DK (1981) The Golgi methods. In: Heym C, Forssmann WG (eds) Techniques in neuroanatomical research. Springer, Berlin Heidelberg New York, pp 124–137

    Google Scholar 

  • Morest DK, Morest RR (1966) Perfusion-fixation of the brain with chrome-osmium solutions for the rapid Golgi method. Am J Anat 118:811–832

    PubMed  CAS  Google Scholar 

  • Morest DK, Oliver DL (1984) The neuronal architecture of the inferior colliculus in the cat: defining the functional anatomy of the auditory midbrain. J Comp Neurol 222:209–236

    PubMed  CAS  Google Scholar 

  • Müller U, Heinsen H (1984) Regional differences in the ultrastructure of Purkinje cells of the rat. Cell Tissue Res 235:91–98

    PubMed  Google Scholar 

  • Nauta WJH, Karten HJ (1970) A general profile of the vertebrate brain, with sidelights on the ancestry of the cerebral cortex. In: Schmitt FO (ed) The neurosciences. Second study program. Rockefeller University Press, New York, pp 7–26

    Google Scholar 

  • Nauta WJH, Kuypers HGJM (1958) Some ascending pathways in the brain stem reticular formation. In: Jasper HH, Proctor LD, Knighton RS, Noshay WC, Costello RT (eds) Reticular formation of the brain. Little, Brown, Boston, pp 3–30

    Google Scholar 

  • Neary TJ, Northcutt RG (1983) Nuclear organization of the bullfrog diencephalon. J Comp Neurol 213:262–278

    PubMed  CAS  Google Scholar 

  • Nieuwenhuys R (1982) An overview of the brain of actinopterygian fishes. Am Zool 22:287–310

    Google Scholar 

  • Nieuwenhuys R (1983) The central nervous system of the brachiopterygian fish Erpetoichthys calabaricus. J Hirnforsch 24:501–533

    PubMed  CAS  Google Scholar 

  • Nieuwenhuys R, Nicholson C (1969) Aspects of the histology of the cerebellum of mormyrid fishes. In: Llinas R (ed) Neurobiology of cerebellar evolution and development. American Medical Assn, Chicago, pp 135–169

    Google Scholar 

  • Niimi K, Kuwahara E (1973) The dorsal thalamus of the cat and comparison with monkey and man. J Hirnforsch 14:303–325

    PubMed  CAS  Google Scholar 

  • Northcutt RG (1969) Discussion of the preceding paper. Ann NY Acad Sci 167:180–185

    Google Scholar 

  • Northcutt RG (1981) Evolution of the telencephalon in nonmammals. Ann Rev Neurosci 4:301–350

    PubMed  CAS  Google Scholar 

  • Ogren MP, Hendrickson AE (1976) Pathways between striate cortex and subcortical regions in Macaca mulatta and Saimiri sciureus: evidence for a reciprocal pulvinar connection. Exp Neurol 53:780–800

    PubMed  CAS  Google Scholar 

  • Oliver DL (1982) A Golgi study of the medial geniculate body in the tree shrew (Tupaia glis). J Comp Neurol 209:1–16

    PubMed  CAS  Google Scholar 

  • Oliver DL, Hall WC (1978 a) The medial geniculate body of the tree shrew, Tupaia glis.I.Cytoarchitecture and midbrain connections. J Comp Neurol 182:423–458

    PubMed  CAS  Google Scholar 

  • Oliver DL, Hall WC (1978 b) The medial geniculate body of the tree shrew, Tupaia glis.II.Connections with the neocortex. J Comp Neurol 182:459–494

    PubMed  CAS  Google Scholar 

  • Oswaldo-Cruz E, Rocha-Miranda CE (1967) The diencephalon of the opossum in stereotaxic coordinates. I. The epithalamus and dorsal thalamus. J Comp Neurol 129:1–38

    Google Scholar 

  • Papez JW (1936) Evolution of the medial geniculate body. J Comp Neurol 64:41–61

    Google Scholar 

  • Pearson KG, Goodman CS (1979) Correlation of variability in structure with variability in synaptic connections of an identified interneuron in locusts. J Comp Neurol 184:141–166

    PubMed  CAS  Google Scholar 

  • Pearson KG, Norris JR, Coccia MR, Mann BL (1983) A Golgi study of the opossum ventral basal complex. J Morphol 177:277–299

    PubMed  CAS  Google Scholar 

  • Pearson R (1972) The avian brain. Academic, London

    Google Scholar 

  • Penny JE (1982) Cytoarchitectural and dendritic patterns of the dorsal column nuclei of the opossum. J Hirnforsch 23:315–330

    PubMed  CAS  Google Scholar 

  • Pfeifer RA (1920) Myelogenetisch-anatomische Untersuchungen über das kortikale Ende der Hörleitung. Abh Sächs Akad Wiss 37:1–54

    Google Scholar 

  • Phillips LL, Autilio-Gambetti L, Lasek RL (1983) Bodian’s silver method reveals molecular variation in the evolution of neurofilament proteins. Brain Res 278:219–223

    PubMed  CAS  Google Scholar 

  • Pierce ET (1967) Histogenesis of the dorsal and ventral cochlear nuclei in the mouse. An autoradiographic study. J Comp Neurol 131:27–54

    PubMed  CAS  Google Scholar 

  • Polyak S (1932) Main afferent fiber systems of cerebral cortex in primates. University of California Publications in Anatomy 2:1–363

    Google Scholar 

  • Portmann A (1946) Études sur la cérébralisation chez les oiseaux. Alauda 14:2–20

    Google Scholar 

  • Portmann A (1947) Études sur la cérébralisation chez les oiseaux. III. Cérébralisation et mode ontogenetique. Alauda 15:161–171

    Google Scholar 

  • Pujol R, Hilding D (1973) Anatomy and physiology of the onset of auditory function. Acta Otolaryngol (Stockh) 76:1–10

    CAS  Google Scholar 

  • Radinsky LB (1970) The fossil evidence of prosimian brain evolution. In: Noback CR, Montagna W (eds) The primate brain, advances in primatology. Appleton-Century-Crofts, New York, pp 209–224

    Google Scholar 

  • Rafols JA, Matzke HA (1970) Efferent projections of the superior colliculus in the opossum. J Comp Neurol 138:147–160

    PubMed  CAS  Google Scholar 

  • Ramon-Moliner E (1962) An attempt at classifying nerve cells on the basis of their dendritic patterns. J Comp Neurol 119:211–227

    PubMed  CAS  Google Scholar 

  • Ramon-Moliner E (1968) The morphology of dendrites. In: Bourne GH (ed) Structure and function of nervous tissue. Academic, New York, pp 205–268

    Google Scholar 

  • Ramon-Moliner E (1970) The Golgi-Cox technique. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. Springer, Berlin Heidelberg New York, pp 32–55

    Google Scholar 

  • Ramon-Moliner E, Nauta WJH (1966) The isodendritic core of the brain stem. J Comp Neurol 126:311–336

    PubMed  CAS  Google Scholar 

  • Ramón y Cajal S (1911) Histologic du système nerveux de l’homme et des vertébrés (2 vols). Maloine, Paris

    Google Scholar 

  • Rasmussen GL (1964) Anatomic relationships of the ascending and descending auditory systems. In: Fields WS, Alford BR (eds) Neurological aspects of auditory and vestibular disorders. Thomas, Springfield, pp 5–19

    Google Scholar 

  • Ravizza RJ, Masterton RB (1972) Contribution of neocortex to sound localization in the opossum (Didelphis virginiana). J Neurophysiol 35:344–356

    PubMed  CAS  Google Scholar 

  • RoBards MJ (1979) Somatic neurons in the brainstem and neocortex projecting to the external nuclei of the inferior colliculus: an anatomical study in the opossum. J Comp Neurol 184:547–566

    PubMed  CAS  Google Scholar 

  • Rocha-Miranda CE, Lent R (eds) (1978) Opossum neurobiology. Academia Brasileira de Çiencias, Rio de Janeiro

    Google Scholar 

  • Rodieck RW, Brening RK (1983) Retinal ganglion cells: properties, types, genera, pathways and trans-species comparisons. Brain Behav Evol 23:121–164

    PubMed  CAS  Google Scholar 

  • Rose GJ, Wilczynski W (1984) The anuran superficial reticular nucleus: evidence for homology with nuclei of the lateral lemniscus. Brain Res 304:170–172

    PubMed  CAS  Google Scholar 

  • Rose JE, Woolsey CN (1949) The relations of thalamic connections, cellular structure and evocable electrical activity in the auditory region of the cat. J Comp Neurol 91:441–466

    PubMed  CAS  Google Scholar 

  • Rubel EW (1978) Ontogeny of structure and function in the vertebrate auditory system. In: Jacobson M (ed) Development of sensory systems. Handbook of sensory physiology, vol IX. Springer, Berlin Heidelberg New York, pp 135–237.

    Google Scholar 

  • Saporta S, Kruger L (1977) The organization of thalamocortical relay neurons in the rat ventrobasal complex studied by the retrograde transport of horseradish peroxidase. J Comp Neurol 174:187–208

    PubMed  CAS  Google Scholar 

  • Scheibel AB, Scheibel ME (1978) The development of somatosensory thalamus in mammals. In: Jacobson M (ed) Development of sensory systems. Handbook of sensory physiology, vol IX. Springer, Berlin Heidelberg New York, pp 239–278

    Google Scholar 

  • Scheibel ME, Davies TL, Scheibel AB (1976) Ontogenetic development of somatosensory thalamus. I. Morphogenesis. Exp Neurol 51:392–406

    PubMed  CAS  Google Scholar 

  • Shatz CJ (1977) Anatomy of interhemispheric connections in the visual system of Boston Siamese and ordinary cats. J Comp Neurol 173:497–518

    PubMed  CAS  Google Scholar 

  • Simpson GG (1937) The beginning of the age of mammals. Biol Rev 12:1–47

    Google Scholar 

  • Simpson GG (1961) Principles of animal taxonomy. Columbia University Press, New York

    Google Scholar 

  • Spatz WB (1978) The retino-geniculo-cortical pathway in Callithrix. I. Interspecific variations in the lamination pattern of the lateral geniculate nucleus. Exp Brain Res 33:551–563

    PubMed  CAS  Google Scholar 

  • Stephan M, Baron G, Frahm HD (1982) Comparison of brain structure volumes in insectivora and primates. II. Accessory olfactory bulb (AOB). J Hirnforsch 23:575–591

    PubMed  CAS  Google Scholar 

  • Stokes JH (1912) The acoustic complex and its relations in the brain of the opossum (Didelphys virginiana). Am J Anat 12:401–445

    Google Scholar 

  • Tobias PV (1971) The brain in hominid evolution. Columbia University Press, New York

    Google Scholar 

  • Ulinski PS (1983) Dorsal ventricular ridge. A treatise of forebrain organization in reptiles and birds. Wiley, New York

    Google Scholar 

  • Van Buren JM, Borke RC (1972) Variations and connections of the human thalamus (2 vols). Springer, New York Berlin Heidelberg

    Google Scholar 

  • Van der Loos H (1956) Une combinaison de deux vieilles méthodes histologiques pour le systéme nerveux central. Monatsschr Psychiatr Neurol 132:330–334

    Google Scholar 

  • Voris HC, Hoerr NL (1932) The hindbrain of the opossum, Didelphis virginiana. J Comp Neurol 54:277–355

    Google Scholar 

  • Wake DB, Roth G, Wake MH (1983) Tongue evolution in lungless salamanders, family Plethodontidae. III. Patterns of peripheral innervation. J Morphol 178:207–224

    PubMed  CAS  Google Scholar 

  • Walker AE (1938) The primate thalamus. University of Chicago Press, Chicago

    Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. Cranbook Institute of Science, Bloomfield Hills, MI

    Google Scholar 

  • Willard FH, Martin GF (1983) The auditory brainstem nuclei and some of their projections to the inferior colliculus in the North American opossum. Neuroscience 10:1203–1232

    PubMed  CAS  Google Scholar 

  • Willard FH, Ho RH, Martin GF (1984) The neuronal types and the distribution of 5-hydroxy-tryptamine and enkephalin-like immunoreactive fibers in the dorsal cochlear nucleus of the North American opossum. Brain Res Bull 12:253–266

    PubMed  CAS  Google Scholar 

  • Winer JA (1979) Neurons of the medial division of the medial geniculate body of the cat. Anat Rec 193:723

    Google Scholar 

  • Winer JA (1984a) The human medial geniculate body. Hear Res 15:225–247

    PubMed  CAS  Google Scholar 

  • Winer JA (1984 b) Identification and structure of neurons in the medial geniculate body projecting to the primary auditory cortex (AI) in the cat. Neuroscience 13:395–413

    PubMed  CAS  Google Scholar 

  • Winer JA (1985) The medial geniculate body of the cat. Adv Anat Embryol Cell Biol 86: 1–98

    PubMed  CAS  Google Scholar 

  • Winer JA, Morest DK (1978) Morphology of neurons and axons in the dorsal nucleus of the medial geniculate body of the cat: study with the Golgi method. Proc Soc Neurosci 4:12

    Google Scholar 

  • Winer JA, Morest DK (1979) What is a homology in the central nervous system? Golgi study of the opossum and cat medial geniculate body. Proc Soc Neurosci 5:147

    Google Scholar 

  • Winer JA, Morest DK (1983 a) The medial division of the medial geniculate body of the cat: implications for thalamic organization. J Neurosci 3:2629–2651

    PubMed  CAS  Google Scholar 

  • Winer JA, Morest DK (1983 b) The neuronal architecture of the dorsal division of the medial geniculate body of the cat. A study with the rapid Golgi method. J Comp Neurol 221:1–30

    PubMed  CAS  Google Scholar 

  • Winer JA, Morest DK (1984) Axons of the dorsal division of the medial geniculate body of the cat; a study with the rapid Golgi method. J Comp Neurol 224:344–370

    PubMed  CAS  Google Scholar 

  • Winer JA, Diamond IT, Raczkowski D (1977) Subdivisions of the auditory cortex of the cat: the retrograde transport of horseradish peroxidase to the medial geniculate body and posterior thalamic nuclei. J Comp Neurol 176:387–418

    PubMed  CAS  Google Scholar 

  • Winer JA, Morest DK, Diamond IT (1987) A cytoarchitectonic atlas of the medial geniculate body of the opossum, Didelphys virginiana ,with a comment on the posterior intralaminar nuclei of the thalamus, (in preparation)

    Google Scholar 

  • Woolsey TA, Van der Loos H (1970) The structural organization of layer IV in the somatosensory region (S 1) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17:205–242

    PubMed  CAS  Google Scholar 

  • Woolsey TA, Welker C, Schwartz RH (1975) Comparative anatomical studies of the Sml face cortex with special reference to the occurrence of “barrels” in layer IV. J Comp Neurol 164:79–94

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Morest, D.K., Winer, J.A. (1986). References. In: The Comparative Anatomy of Neurons: Homologous Neurons in the Medial Geniculate Body of the Opossum and the Cat. Advances in Anatomy Embryology and Cell Biology, vol 97. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70652-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70652-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15726-7

  • Online ISBN: 978-3-642-70652-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics