Skip to main content

Interaction Between a Vortex and a Turbulent Boundary Layer in a Streamwise Pressure Gradient

  • Conference paper
Turbulent Shear Flows 5

Abstract

The effect of a moderate adverse pressure gradient on the interaction between a single streamwise vortex and a turbulent boundary layer is investigated experimentally. Quantitative characterization of vortex properties based on measurements of the mean cross-flow velocity components is attained. Growth of the vortex core is observed, followed by a flattening of the core shape which occurs when the core radius becomes comparable to the distance of the vortex center from the surface. The adverse pressure gradient causes an increase in the rate of core growth and, therefore, a stronger distortion of the core shape. Turbulence properties are even more strongly disturbed by an adverse pressure gradient than by constant pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Cf):

Skin friction coefficient

CP):

Pressure coefficient;

$${C_{P}} = [P(X) - P(X = 10cm)]/[(1/2)\varrho U_{0}^{2} $$
P):

Static pressure (measured with a wall static tap)

RY, RZ):

Vortex core radial dimensions in vertical and spanwise directions, respectively

RΓ):

Vortex circulation Reynolds number;

$${R_{\Gamma }} = \Gamma /v $$
u, v;, w):

Velocity components in X, Y, Z directions

U, V, W):

Mean velocities; shorthand notation for ū, ῡ, v,w

X, Y, Z):

Right-hand Cartesian streamwise, vertical, and spanwise coordinate directions, respectively

Γ):

Overall circulation

δ):

Boundary-layer thickness

v):

Air kinematic viscosity

ϱ):

Air density

Ωx):

Streamwise vorticity; Ω

$$ {\Omega _{x}} = \partial W/\partial Y - \partial V/\partial Z $$
—):

Time average

′):

Turbulence component, e.g.,

$$ u = U + {u^{'}} $$
c):

Refers to vortex center

e):

Refers to local free-stream conditions

max):

Maximum value for a particular crossflow plane

0):

Reference value (measured in free stream at X = 10 cm)

References

  1. Batchelor, G. K. (1967): Introduction to Fluid Dynamics (Cambridge University Press) 543–555

    Google Scholar 

  2. Leibovieh, S. (1984): Vortex breakdown and stability: survey and extension. AIAA J. 22, 1192–1206

    Article  ADS  Google Scholar 

  3. Leuchter, O., Solignac, J. L. (1984): “Experimental Investigation of the Turbulent Structure of Vortex Wakes,” in Turbulent Shear Flows, ed. by L. J. S. Bradbury et al. (Springer, Berlin, Heidelberg) 156

    Google Scholar 

  4. Shabaka, I. M. M. A., Mehta, R. D., Bradshaw, P.: (1985): Longitudinal vortices imbedded in turbulent boundary layers. Part I. Single vortex. J. Fluid Mech. 155, 37

    Article  ADS  Google Scholar 

  5. Mehta, R. D., Shabaka, I. M. M. A., Shibl, A., Bradshaw, P. (1983): Longitudinal vortices imbedded in turbulent boundary layers. AIAA Paper 83–0378, Reno, Nevada

    Google Scholar 

  6. Hoffman, E. R., Joubert, P. N. (1963): Turbulent line vortices. J. Fluid Mech. 16, 395–411

    Article  ADS  MATH  Google Scholar 

  7. Phillips, W. R. C., Graham, J. A. H. (1984): Reynolds-stress measurements in a turbulent trailing vortex. J. Fluid Mech. 147, 353–371

    Article  ADS  Google Scholar 

  8. Westphal, R. V., Mehta, R. D. (1984): Cross hot-wire anemometry data acquisition and reduction system. NASA TM-85871

    Google Scholar 

  9. Shepherd, I. C. (1981): A four-hole probe for fluid flow measurements in three dimensions. Transactions of the American Society of Mechanical Engineers, J. Fluids Eng. 103, 590–594

    Article  Google Scholar 

  10. Youssefmir, P. (1982): “Flow Studies of Full-Coverage Film Cooling on a Convexly Curved Surface;” Ph.D. Thesis, Department of Mechanical Engineering, Stanford University, Stanford, CA

    Google Scholar 

  11. Tanner, L. H. (1981): The application of fizeau interferometry of oil films to the study of surface flow phenomena. Opt. Lasers Eng. 2, 105–118

    Article  Google Scholar 

  12. Westphal, R. V., Bachalo, W. D., Houser, M. H. TM-882/6: Improved skin friction interferometer. NASA Technical Memorandum

    Google Scholar 

  13. Bushnell, D. M. (1984): Body-turbulence interaction. AIAA Paper 94–1527, Snowmass, CO

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Westphal, R.V., Eaton, J.K., Pauley, W.R. (1987). Interaction Between a Vortex and a Turbulent Boundary Layer in a Streamwise Pressure Gradient. In: Durst, F., Launder, B.E., Lumley, J.L., Schmidt, F.W., Whitelaw, J.H. (eds) Turbulent Shear Flows 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71435-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71435-1_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71437-5

  • Online ISBN: 978-3-642-71435-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics