Skip to main content

Functional Implications of Structure and Synaptology of Motor Neurons in Motor Neuron Disease

  • Conference paper
Clinical Aspects of Sensory Motor Integration

Part of the book series: Advances in Applied Neurological Sciences ((NEUROLOGICAL,volume 4))

  • 112 Accesses

Abstract

Motor neuron disease, or amyotrophic lateral sclerosis (ALS) is by no means uncommon. The number of new cases per year is more than half that reported for multiple sclerosis although the prevalence is low because of the rapid and fatal course of the disease. It is — and has been for the last 100 years — a major challenge to the neurologist to search for the cause and for an effective treatment of this disease. Despite the prominent symptoms such as progressive generalized paresis in striated muscle, the neuronal damage responsible for paresis is far from generalized, as it is concentrated in lower motor neurons in the spinal cord and brain stem and in neurons in descending tracts of the spinal cord, especially in the pyramidal tract.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Averback P, Crocker P (1982) Regular involvement of Clarke’s nucleus in sporadic amyotrophic lateral sclerosis. Arch Neurol 39: 155–156

    PubMed  CAS  Google Scholar 

  2. Bak IJ, Choi Wb (1974) Electron microscopic investigation of the trochlear nucleus in the cat. Cell Tissue Res 150: 409–423

    Article  PubMed  CAS  Google Scholar 

  3. Bodian D, Howe HA (1941) The rate of progression of poliomyelitis virus in nerves. Bull Johns Hopkins Hosp 69: 79–85

    Google Scholar 

  4. Broadwell RD, Brightman MW (1976) Entry of peroxidase into neurons of the central and peripheral neurons system from extracerebral and cerebral blood. J Comp Neurol 166: 257284

    Google Scholar 

  5. Conradi S, Ronnevi L-O (1982) Cytotoxic factor in plasma from ALS patients provokes haemolysis of normal erythrocytes. Acta Neurol Scand [Suppl 90] 65: 246–247

    Article  Google Scholar 

  6. Conradi S, Ronnevi L-O (1985) Cytotoxic activity in the plasma of ALS patients against normal erythrocytes. Quantitative determinations. J Neurol Sci 68: 135–145

    Google Scholar 

  7. Cullheim S, Kellerth J-O, Conradi S (1977) Evidence for direct synaptic interconnections between cat spinal alpha motoneurons via the recurrent axon collaterals. A morphological study using intracellular injection of horseradish peroxidase. Brain Res 132: 1–10

    Google Scholar 

  8. Digby J, Harrison R, Jehanli A, Lunt GG, Capildeo R, Clifford-Rose F (1984) Immunological changes in motor neurone disease. In: Clifford-Rose F (ed) Research progress in motor neuron disease. Pitman, London, pp 368–378

    Google Scholar 

  9. Hirano A (1982) Aspects of the ultrastructure of amyotrophic lateral sclerosis. In: Rowland LP (ed) Human motor neuron diseases. Raven, New York, pp 75–86

    Google Scholar 

  10. Dyck PJ, Stevens JC, Mulder DW, Espinosa RE (1975) Frequency of nerve fiber degeneration of peripheral motor and sensory neurons in amyotrophic lateral sclerosis. Neurology 25: 781–785

    PubMed  CAS  Google Scholar 

  11. Ikuta F, Makifuchi T, Ichikawa T (1979) Comparative studies of tract degeneration in ALS and other disorders. In: Tsubako T, Toyokura T (eds) Amyotrophic lateral sclerosis. University Park Press, Baltimore, pp 177–200

    Google Scholar 

  12. Kellerth J-O, Conradi S, Berthold C-H (1983) Electron microscopic studies of serially sectioned cat spinal alpha motoneurons: motoneurons innervating fast-twitch (type FF) units of the gastrocnemius muscle. J Comp Neurol 214: 451–458

    Article  Google Scholar 

  13. Kristensson K (1970) Transport of fluorescent protein tracer in peripheral nerves. Acta Neuropathol 16: 293–300

    Article  PubMed  CAS  Google Scholar 

  14. Kuypers HGJM (1981) Anatomy of the descending pathways. In: Brooks VB (ed) The nervous system. Handbook of physiology, sect 1, vol II. American Physiological Society, Washington, pp 597–666

    Google Scholar 

  15. Lagerbäck PA (1985) On ultrastructural studies of cat lumbosacral gamma motor neurons after retrograde labelling with horseradish peroxidase. J Comp Neurol 240: 256–264

    Article  PubMed  Google Scholar 

  16. Manni E, Bortolami R (1982) Proprioception in eye muscles. In: Lennerstrand G, Zee DS, Keller EL (eds) Functional basis of ocular mobility disorders. Pergamon, Oxford New York, pp 53–64

    Google Scholar 

  17. McLaughlin B (1972) Propriospinal and supraspinal projections to the motor nuclei in the cat spinal cord. J Comp Neurol 144: 475–500

    Article  Google Scholar 

  18. Pullen AH, Sears TA (1978) Modification of “C”-synapses following partial central deafferentation of thoracic motorneurons. Brain Res 145: 141–146

    Article  PubMed  CAS  Google Scholar 

  19. Roisen FJ, Bartfeld H, Donnenfeld H, Baxter J (1982) Neuron-specific in vitro cytotoxicity of sera from patients with amyotrophic lateral sclerosis. Muscle Nerve 5: 48–53

    Article  PubMed  CAS  Google Scholar 

  20. Ronnevi L-O, Conradi S, Karlsson E (1984) Cytotoxic effects of immunoglobulins in amyotrophic lateral sclerosis (ALS). Acta Neurol Scand [Suppl 98] 69: 182–183

    Article  Google Scholar 

  21. Schröder HD (1980) Organization of the motoneurons innervating the pelvis muscles of the male rat. J Comp Neurol 192: 567–587

    Article  PubMed  Google Scholar 

  22. Schröder HD (1985) Anatomical and pathoanatomical studies on the spinal efferent systems innervating pelvic structures. J Anton Nery Syst 14: 23–48

    Article  Google Scholar 

  23. Sobue K, Matsouka Y, Mukai E, Takayanagi T, Sobue I, Hashizume Y (1981) Spinal and cranial motor nerve roots in amyotrophic lateral sclerosis and X-linked recessive bulbospinal muscular atrophy. Morphometric and teased-fiber study. Acta Neuropathol 55: 227–235

    Google Scholar 

  24. Wolfgram F, Myers L (1972) Toxicity of serum from patients with ALS for anterior horn cells in vitro. Transam Neurol Assoc 97: 19–23

    Google Scholar 

  25. Wunner WH (1982) Is the acetylcholine receptor a rabies virus receptor? Trends in Neurosciences 5: 413–415

    Article  CAS  Google Scholar 

  26. Zieglgänsberger W, Reiter C (1974) Interneuronal movement of Procion Yellow in cat spinal neurons. Exp Brain Res 20: 527–530

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Conradi, S. (1987). Functional Implications of Structure and Synaptology of Motor Neurons in Motor Neuron Disease. In: Struppler, A., Weindl, A. (eds) Clinical Aspects of Sensory Motor Integration. Advances in Applied Neurological Sciences, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71540-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71540-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71542-6

  • Online ISBN: 978-3-642-71540-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics