Skip to main content

Influences of Meningeal Cells on the Development of the Brain

  • Conference paper
Mesenchymal-Epithelial Interactions in Neural Development

Part of the book series: NATO ASI Series ((ASIH,volume 5))

Abstract

Most epithelia are unable to develop in the absence of their surroundings mesenchyme, and the latter influences such fundamental events in epithelial development as cell proliferation, branching morphogenesis and functional differentiation (reviews in Grobstein, 1955; Wessells, 1977; Bernfield and Banerjee, 1978; Hay, 1981, 1984; Cunha et al., 1983; Bernfield et al., 1984). Already the earliest stages of neural development, i.e., the formation of the neural plate in the dorsal ectoderm of the gastrula, are induced by the underlying mesoderm (reviews in Spemann, 1938; Jacobson, 1984). In the spinal cord this neural induction is followed by a series of tissue interactions between neural plate and neural tube on the one hand and the adjacent chorda dorsalis and the somites on the other hand which result in the characteristic shape of the developing spinal cord (see van Straaten and Drukker, this volume). Little is known about similar influences on the development of the brain, yet the mesenchymal partner in such tissue interactions would be the meninges, and the occurrence and significance of a postulated mesenchymal-epithelial interaction during brain development can be assessed if the meningeal cells are eliminated in different stages of CNS ontogeny. In this article we will summarize the evidence collected in our laboratories over the last few years on the influences of meningeal cells on brain development, which we have obtained utilizing a pharmocological method for the selective destruction of meningeal cells. These findings show that in addition to secreting as yet unidentified, probably diffusible molecules stimulating cell proliferation (see Gensburger et al., and Pehlemann et al. this volume), the meningeal cells stabilize the external surface of the cerebellum and hippocampus by producing components of both the interstitial matrix and the basal lamina and thus form the foundation of the radial glial scaffold presenr in these regions which, is involved in establishing the pattern of folia and laminae by guiding neuronal migration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alitalo, K. (1980) Production of both interstitial and basement membrane procollagens by fibroblastic Wi 38 cells from human embryonic lung. Biochem. Biophys. Res. Commun. 93: 873–880.

    Article  PubMed  CAS  Google Scholar 

  • Allen, C., J. Sievers, M. Berry, and S. Jenner (1981) Experimental studies on cerebellar foliation. II. A morphometric analysis of cerebellar fissuration defects and growth retardation after neonatal treatment with 6-OHDA in the rat. J. Comp. Neurol. 202: 771–784.

    Article  Google Scholar 

  • Bernfield, M.R., and S.D. Banerjee (1978) The basal lamina in epithelial-mesenchymal morphogenetic interactions. In Biology and Chemistry of Basement Membranes, N.A. Kefalides, ed., pp. 137–148. Academic Press, New York. Bernfield, M.R., S.D. Banerjee, J.E. Koda, and A.C. Rapraeger (1984) Remodeling of the basement membrane as a mechanism of morphogenetic tissue interaction. In The role of extracellular matrix in development, R. Trelstad, ed., pp. 545–572. Alan R.Liss, New York.

    Google Scholar 

  • Boke, R., and J. Sievers (1986) Effects of the noradrenergic neurotoxic DSP4 on the development of the locus coeruleus and the cerebellum. In preparation.

    Google Scholar 

  • Bönisch, H. (1980) Extraneuronal transport of catecholamines. Pharmacology. 21: 93–108.

    Article  PubMed  Google Scholar 

  • Braak, H. (1974) On the intermediate cells of Lugaro within the cerebellar cortex of man. Cell Tissue Res. 149: 399–411.

    Article  PubMed  CAS  Google Scholar 

  • Cunha, G.R., L.W.K. Chung, J.M. Shannon, O. Taguchi, and H. Fujii (1983) Hormone- induced morphogenesis and growth: Role of mesenchymal-epithelial interactions. Ree. Prog. Hormone Res. 39: 559–398.

    CAS  Google Scholar 

  • Grobstein, C. (1955) Tissue interaction in the morphogenesis of mouse embryonic rudiments in vitro. In Aspects of Synthesis and Order in Growth, D. Rudnick, et., pp. 233–256. Princeton University Press, Princeton.

    Google Scholar 

  • Grobstein, C., and J. Cohen (1965) Collagenase: Effect on the morphosgenesis of embry¬onic salivary epithelium in vitro. Science 150: 626–628.

    Article  PubMed  CAS  Google Scholar 

  • Gude, S., J. Burmester, J. Sievers, and F.W. Pehlemann (1986) Meningeal cells synthesize components of both the interstitial matrix and the basal lamina at the surface of the brain. In preparation.

    Google Scholar 

  • Hartmann, D., J. Sievers, and F.W. Pehlemann (1986a) Die Zerstörung der Meningeal- zellen über dem medialen cerebralen Cortex neugeborener Hamster verhindert die Bildung des infrapyramidalen Blattes des Gyrus dentatus. Anat. Anz.161: 136.

    Google Scholar 

  • Hartmann, D., J. Sievers, and F.W. Pehlemann (1986b) Die Entwicklung des Gyrus dentatus nach Zerstörung der Meningealzellen: Analyse der Zellwanderung und des Gliagerüstes. Anat. Anz (Erg.-H.), in press.

    Google Scholar 

  • Hausmann, B., and J. Sievers (1985) Cerebellar external granule cells are attached to the basal lamina from the onset of migration up to the end of their proliferative activity. J. Comp. Neurol. 241: 50–62.

    Article  PubMed  CAS  Google Scholar 

  • Hay, E.D. (1981) Collagen and embryonic development. In Cell Biology of Extracellular Matrix, E.D. Hay, ed., pp. 379–409. Plenum, New York.

    Chapter  Google Scholar 

  • Hay, E.D. (1984) Cell-matrix interaction in the embryo: Cell shape, cell surface, cell skeletons, and their role in differentiation. In The Role of Extracellular Matrix in Development, R. Trelstad, ed., pp. 1–31. Alan R. Liss, New York.

    Google Scholar 

  • Iversen, L.L. (1975) Uptake processes for biogenic amines. In Handbook of Psychophar- macology, L.L. Iversen, S.D. Iversen, and S.H. Snyder, eds., pp. 96–117, vol. J. Plenum, New York.

    Google Scholar 

  • Jacobson, M. (1984) Cell lineage analysis of neural induction: Origins of cells forming the induced nervous system. Dev. Biol. 102: 122–129.

    Article  PubMed  CAS  Google Scholar 

  • Jonsson, G. (1980) Chemical neurotoxins as denervation tools in neurobiology. Ann. Rev. Neurosci. 3: 169–187.

    Article  PubMed  CAS  Google Scholar 

  • Jonsson, G., H. Hallmann, and E. Sundström (1982) Effects of the noradrenaline neurotoxin DSP4 on the postnatal development of central noradrenaline neurons in the rat. Neuroscience 7: 2895–2907.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, G.P., B.K. Hartmann, and C.R. Creveling (1979) Immunhistochemical demonstration of catechol-O-methyltransferase in mammalian brain. Brain Res. 167: 41–52.

    Article  Google Scholar 

  • Kaplan, G.P., B.K. Hartmann, and C.R. Creveling (1981) Localization of catechol-O- methyltransferase in the leptomeninges, choroid plexus and ciliary epithelium: Implications for the separation of central and peripheral catechols. Brain Res. 204: 353–360.

    Article  PubMed  CAS  Google Scholar 

  • von Knebel Doeberitz, Ch., J. Sievers, M. Sadler, F.-W. Pehlemann, M. Berry, and P. Halliwell (1986) Destruction of meningeal cells over the newborn hamster cerebellum with 6-hydroxydopamine prevents foliation and lamination in the rostral cerebellum. Neuroscience 17: 409–426.

    Article  Google Scholar 

  • Kühl, U., R. Timpl, and K. v.d. Mark (1982) Synthesis of type IV collagen and laminin in cultures of skeletal muscle cells and their assembly on the surface of myotubes. Dev. Biol. 93: 344–354.

    Article  Google Scholar 

  • Kühl, U., M. Öchalan, R. Timpl, R. Mayne, E. Hay, and K. v.d. Mark (1984) Role of muscle fibroblasts in the deposition of type IV collagen in the basal lamina of myotubes. Differentiation 28: 164–172.

    Article  PubMed  Google Scholar 

  • Lidov, H.G.W., and M.E. Molliver (1982) The structure of cerebral cortex in the rat following prenatal administration of 6-hydroxydopamine. Dev. Brain Res. 3: 81–108.

    Article  CAS  Google Scholar 

  • Pehlemann, F.W., J. Sie vers, and M. Berry (1985) Meningeal cells are involved in folia¬tion, lamination and neurogenesis of the cerebellum: Evidence from 6-hydroxy- dopamine-induced destruction of meningeal cells. Dev. Biol. 110: 136–146.

    Article  PubMed  CAS  Google Scholar 

  • Pehlemann, F.W., and J. Sievers (1986) Die Transplantation fetaler Meningealzellen auf das Kleinhirn neugeborener Ratten verringert das Auftreten 6-OHDA-induzierter Veränderungen der Schichtenbildung. Anat. Anz. 161: 154–155.

    Google Scholar 

  • Rakic, P. (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex: A Golgi and electron microscopic study in Macacus rhesus. J. Comp. Neurol. 141: 283–312.

    Article  PubMed  CAS  Google Scholar 

  • Rakic, P. (1982) The role of neuronal-glial cell interaction during brain development. In Neuronal-glial Cell I interrelationships, T.A. Sears, ed., pp. 25–38. Springer, Heidelberg and New York.

    Google Scholar 

  • Sanderson, R.D., J.M. Fitch, T.R. Linsenmayer, and R. Mayne (1986) Fibroblasts promote the formation of a continuous basal lamina during myogenesis in vitro. J. Cell Biol. 102: 740–747.

    Article  PubMed  CAS  Google Scholar 

  • Sievers, 3., H.P. Klemm, S. Jenner, H.G. Baumgarten, and M. Berry (1980) Neuronal and extraneuronal effects of intracisternally administered 6-hydroxydopamine on the developing rat brain. J. Neurochem. 34: 765–771.

    Article  PubMed  CAS  Google Scholar 

  • Sievers, J., U. Mangold, M. Berry, C. Allen, and H.G. Schlossberger (1981) Experimental studies on cerebellar foliation. I. A qualitative morphological analysis of cerebellar fissuration defects after neonatal treatment with 6-OHDA in the rat. J. Comp. Neurol. 203: 751–769.

    Article  PubMed  CAS  Google Scholar 

  • Sievers, H., J. Sievers, H.G. Baumgarten, N. König, and H.G. Schlossberger (1983a) Distribution of tritium label in the neonate rat brain following intracisternal or subcutaneous administration of -OHDA. An autoradiographic study. Brain Res. 275: 23–45.

    Article  PubMed  CAS  Google Scholar 

  • Sievers, J., U. Mangold, and M. Berry (1983b) 6-OHDA-induced ecotopia of external granule cells in the subarachnoid space covering the cerbellum. Genesis and topography. Cell Tissue Res. 230: 309–336.

    Google Scholar 

  • Sievers, J., F.-W. Pehlemann, H.G. Baumgarten, and M. Berry (1985) Selective destruction of meningeal cells by 6-hydroxydopamine: A tool to study meningeal-neuroepithelial interaction in brain development. Dev. Biol. 110: 127–135.

    Article  PubMed  CAS  Google Scholar 

  • Sievers, J., F.-W. Pehlemann, and M. Berry (1986a) Influences of meningeal cells on brain development: Findings and hypothesis. Naturwissenschaften 73: 8 8–194.

    Google Scholar 

  • Sievers, J., Ch. von Knebel Doeberitz, F.W. Pehlemann, and M. Berry (1986b) Meningeal cells influence cerebellar development over a critical period. Anat. Embryol., in press,.

    Google Scholar 

  • Spemann, H. (1938) Experimentelle Beiträge zu einer Theorie der Entwicklung. Springer, Berlin.

    Google Scholar 

  • Spooner, B.R., and J.M. Faubion (1980) Collagen involvement in branching morphogenesis of embryonic lung and salivary gland. Dev. Biol. 77: 84–102.

    Article  PubMed  CAS  Google Scholar 

  • Wessells, N.K. (1977) Tissue Interactions and Development. Benjamin, New York.

    Google Scholar 

  • Wessells, N.K., and J.A. Cohen (1968) Effects of collagenase on developing epithelia in vitro: Lung, ureteric bud, and pancreas. Dev. Biol. 18: 294–309.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sievers, J., Hartmann, D., Gude, S., Pehlemann, F.W., Berry, M. (1987). Influences of Meningeal Cells on the Development of the Brain. In: Wolff, J.R., Sievers, J., Berry, M. (eds) Mesenchymal-Epithelial Interactions in Neural Development. NATO ASI Series, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71837-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71837-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71839-7

  • Online ISBN: 978-3-642-71837-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics