Skip to main content

CVD Diamond for Ultraviolet and Particle Detectors

  • Chapter
Low-Pressure Synthetic Diamond

Part of the book series: Springer Series in Materials Processing ((SSMATERIALSPROC))

  • 549 Accesses

Abstract

Conventional solid-state photodetectors, such as those made using silicon, are typically diode structures operated with a reverse bias placed across them. Low dark currents result; carriers photo-generated in the depletion region form a drift current which is the basis for light detection. Light with an energy greater than the band gap of the material can be seen. Silicon has a 1.1 eV band gap and devices fabricated from this material therefore react to both ultra-violet and visible wavelengths. The high resistivity of diamond suggests that diode structures may not be needed to achieve low dark currents if this material were used for the fabrication of photodetectors. Metal/diamond/metal devices can be considered which simply rely upon photoconductivity for their operation; such a device could possess high gain, since many carriers may be able to flow around the detector circuit during the lifetime of a photo-generated electron-hole pair. The wide band gap (5.5 eV, 225 run) of diamond implies that this form of photodetector will be capable of detecting deep UV light while being essentially “blind” to visible wavelengths. This property is highly desirable; filtering conventional devices to make them visible blind significantly reduces their sensitivity to UV light. The physical and chemical robustness of diamond also suggests that such devices may be suitable for operation in hostile environments. Diamond can exhibit high carrier mobilities, saturated carrier velocities and electric field breakdown strength; these properties suggest that fast detectors may be realisable. Many industrial, military and environmental applications can thus be envisaged for diamond UV sensors. The emergence of commercially accessible thin-film diamond grown by chemical vapour deposition (CVD) has enabled reliable devices to be developed. In this chapter, the intrinsic and extrinsic photoconductivity of thin-film diamond is reviewed; the design, fabrication and performance of diamond UV photodetectors is then discussed, along with some of the uses for these devices. For some applications, it may be desirable to fabricate diamond photodiodes; the realisation of this type of device from p-type material is also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Nahum and A. Halperin, J. Phys. Chem. Solids 23, 345 (1962)

    Article  ADS  Google Scholar 

  2. P. Denham, E.C. Lightowlers, and P.J. Dean, Phys. Rev. 161, 762 (1967)

    Article  ADS  Google Scholar 

  3. A.T. Collins and E.C. Lightowlers, Phys. Rev. 171, 843 (1968)

    Article  ADS  Google Scholar 

  4. A.T. Collins, E.C. Lightowlers, and P.J. Dean, Phys. Rev. 183, 725 (1969)

    Article  ADS  Google Scholar 

  5. E. Pereira and L. Santos, Diamond Rel. Mater. 4, 688 (1995)

    Article  Google Scholar 

  6. L.A. Vermeiden and R.G. Fairer, Diamond Res. 1975, 18 (1975)

    Google Scholar 

  7. A. Halperin and L.A. Vermeiden, J. Phys. Chem. Solids 43, 691 (1982)

    Article  ADS  Google Scholar 

  8. L.A. Vermeiden and A. Halperin, J. Phys. Chem. Solids 45, 771 (1984)

    Article  ADS  Google Scholar 

  9. R.G. Farrer and L.A. Vermeulen, J. Phys. C: Solid State Phys. 5, 2762 (1972)

    Article  ADS  Google Scholar 

  10. See, for example, Diamond Films ’95, ed. P.K. Bachmann, IM. Buckley-Golder, J.T. Glass, and M. Kamo, Elsevier, Amsterdam (1996)

    Google Scholar 

  11. L.S. Pan, D.R. Kania, S. Han, J.W. Ager, M. Landstrass, O.L. Landen, and P. Pianetta, Science 255, 830 (1992)

    Article  ADS  Google Scholar 

  12. R. Vaitkus, T. Inushima, and S. Yamazaki, Appl. Phys. Lett. 62, 2384 (1993)

    Article  ADS  Google Scholar 

  13. P. Gonon, A. Deneuville, E. Gheeraert, and F. Fontaine, Diamond Rel. Mater. 3, 836 (1994)

    Article  Google Scholar 

  14. L. Allers and A.T. Collins, J. Appl. Phys. 77, 3879 (1995)

    Article  ADS  Google Scholar 

  15. P. Gonon, A. Deneuville, F. Fontaine, and E. Gheeraert, J. Appl. Phys. 78, 6633 (1995)

    Article  ADS  Google Scholar 

  16. S.C. Binari, M. Marchywka, D.A. Koolbeck, H.B. Dietrich, and D. Moses, Diamond Rel. Mater. 2, 1020 (1993)

    Article  Google Scholar 

  17. R. Vaitkus, T. Inushima, and S. Yamazaki, Appl. Phys. Lett. 62, 2384 (1993)

    Article  ADS  Google Scholar 

  18. P. Gonon, S. Prawer, Y. Boiko, and D.N. Jamieson, Diamond Rel. Mater. 6, 860 (1997)

    Article  Google Scholar 

  19. R.D. McKeag, S.S.M. Chan, and R.B. Jackman, Appl. Phys. Lett. 67, 2117 (1995)

    Article  ADS  Google Scholar 

  20. S.S.M. Chan, R.D. McKeag, M.D. Whitfield, and R.B. Jackman, Phys. Status Solidi A 154, 445 (1996)

    Article  ADS  Google Scholar 

  21. M.D. Whitfield, R.D. McKeag, L.Y.S. Pang, S.S.M. Chan, and R.B. Jackman, Diamond Rel. Mater. 5, 829 (1996)

    Article  Google Scholar 

  22. R.D.McKeag, M.D. Whitfield, S.S.M. Chan, L.Y.S. Pang, and R.B. Jackman, Mater. Res. Soc. Symp. Proc. 416, 419 (1996)

    Article  Google Scholar 

  23. R.D. McKeag, R.D. Marshall, B. Baral, S.S.M. Chan, and R.B. Jackman, Diamond Rel. Mater. 6, 374 (1997)

    Article  Google Scholar 

  24. R.D. McKeag and R.B. Jackman, Diamond Rel. Mater. 7, 513 (1998)

    Article  Google Scholar 

  25. D. R. Kania, M.I. Landstrass, M.A. Piano, L.S. Pan, and S. Han, Diamond Rel. Mater. 2, 1012 (1993)

    Article  Google Scholar 

  26. S. Salvatori, E. Pace, M.C. Rossi, and F. Galluzzi, Diamond Rel. Mater. 6, 361 (1997)

    Article  Google Scholar 

  27. H. Yoneda, K. Ueda, Y. Aikawa, K. Baba, and N. Shohata, Appl. Phys. Lett. 66, 460 (1995)

    Article  ADS  Google Scholar 

  28. M. Marchywka, J.F. Hochedez, M.W. Geis, D.G. Socher, D. Moses, and R.T. Goldberg, Appl. Opt. 30, 5011 (1991)

    Article  ADS  Google Scholar 

  29. M.D. Whitfield, S.S.M. Chan, and R.B. Jackman, Appl. Phys. Lett. 68, 290 (1996)

    Article  ADS  Google Scholar 

  30. MI. Landstrass and K.V. Ravi, Appl. Phys. Lett. 55, 1391 (1989)

    Article  ADS  Google Scholar 

  31. H. Shiomi, Y. Nishibayashi, and N. Fujimori, Jpn. J. Appl. Phys. 30, 1363 (1991)

    Article  ADS  Google Scholar 

  32. T. Maki, S. Shikama, M. Komori, Y. Sakaguchi, K. Sakuta, and T. Kobayashi, Jpn. J. Appl. Phys. 31, 1363 (1992)

    Article  Google Scholar 

  33. K. Hayashi, S. Yamanaka, H. Okushi, and K. Kajimura, Appl. Phys. Lett. 68, 376 (1996)

    Article  ADS  Google Scholar 

  34. HJ. Looi, J.S. Foord, and R.B. Jackman, Appl. Phys. Lett. 72, 353 (1998)

    Article  ADS  Google Scholar 

  35. H.J. Looi, L.Y.S. Pang, M.D. Whitfield, and R.B. Jackman, Diamond Rel. Mater. 7, 565 (1998)

    Article  Google Scholar 

  36. Y. Wang, R.D. McKeag, H.J. Looi, and R.B. Jackman, Appl. Phys. Lett, (in press)

    Google Scholar 

  37. H. Friedman, L.S. Birks, and H.P. Gauvin, Phys. Rev. 73, 186 (1948)

    Article  ADS  Google Scholar 

  38. S. Dannefaer and D. Kerr, Diamond Rel. Mater. 1, 407 (1992)

    Article  Google Scholar 

  39. G. Davies, S.C. Lawson, A.T. Collins, A. Mainwood, and SJ. Sharp, Phys. Rev. B46, 1357 (1992)

    Google Scholar 

  40. D.W. Palmer, in Properties of Diamond, ed. G. Davies, INSPEC, London (1994)

    Google Scholar 

  41. G. Davies, E.C. Lightowlers, R.C. Newman, and A.S. Oates, Semicond. Sci. Technol. 2, 524 (1987)

    Article  ADS  Google Scholar 

  42. E.WJ. Mitchell, in Physical Properties of Diamond ed. R. Berman, Clarendon Press, Oxford (1965)

    Google Scholar 

  43. J. Hassard, Nucl. Instrum. Methods A368, 217 (1995)

    ADS  Google Scholar 

  44. A. Mainwood, L. Allers, A.T. Collins, J.F. Hassard, A.S. Howard, A.R. Mahon, H.L. Parsons, T. Sumner, J.L. Collins, G.A. Scarsbrook, R.S. Sussmann, and A.J. Whitehead, J. Phys. D (Appl. Phys.) 28, 1279 (1995)

    Article  ADS  Google Scholar 

  45. L. Allers and A. Mainwood, Diamond Rel. Mater. 7, 261 (1998)

    Article  Google Scholar 

  46. C. Bauer and 46 other authors, Nucl. Instrum. Methods A367, 207 (1995)

    ADS  Google Scholar 

  47. EC. Chapman and F.C. Wright, Proc. Phys. Soc. A253, 385 (1959)

    Google Scholar 

  48. P.J. Dean and J.C. Male, J. Phys. Chem. Solids 25, 311 (1964)

    Article  ADS  Google Scholar 

  49. S.F. Kozlov, R. Stuck, M. Hage-Ali, and P. Siffert, IEEE Trans. Nucl. Sci. NS-22, 160 (1975)

    Article  ADS  Google Scholar 

  50. S.F. Kozlov, E.A. Konorova, M.I. Krapivin, V.A. Nadein, and V.G. Yudina, IEEE Trans. Nucl. Sci. NS-24, 242 (1977)

    Article  ADS  Google Scholar 

  51. C. Canali et al., Nucl. Instrum. Methods 160, 73 (1979)

    Article  ADS  Google Scholar 

  52. PJ. Fallon et al., Appl. Radiat. Isot. 41, 35 (1990)

    Article  Google Scholar 

  53. RJ. Keddy and T.L. Nam, Radiat. Phys. Chem. 41, 767 (1993)

    Article  ADS  Google Scholar 

  54. J. Kaneko and M. Katagiri, Nucl. Instrum. Methods A383, 547 (1996)

    ADS  Google Scholar 

  55. F. Foulon, T. Pochet, E. Gheeraert, and A. Deneuville, Mater. Res. Soc. Symp. Proc. 339, 185 (1994)

    Article  Google Scholar 

  56. F. Foulon, T. Pochet, E. Gheeraert, and A. Deneuville, IEEE Trans. Nucl. Sci. NS-41, 927 (1994)

    Article  ADS  Google Scholar 

  57. C. Manfredotti et al., Nucl. Instram. Methods B93, 516 (1994)

    Article  ADS  Google Scholar 

  58. T. Pochet, A. Brambilla, P. Bergonzo, F. Foulon, C. Jany, and A. Gicquel, Italian Physical Society, Conf. Proc. (Eurodiamond ’96) 52, 111 (1996)

    Google Scholar 

  59. R.D. McKeag, R.D. Marshall, F. Foulon, P. Bergonzo, C. Jany, and R.B. Jackman, Appl. Phys. Lett, (in press)

    Google Scholar 

  60. G.F. Knoll, Radiation Detection and Measurement, 2nd edn., Wiley, New York (1989), p. 259

    Google Scholar 

  61. S.F. Kozlov, V.P. Katkov, and A.J. Krupman, IEEE Trans. Nucl. Sci. NS-22, 901 (1975)

    Article  ADS  Google Scholar 

  62. S.F. Kozlov, A.V. Bachurin, S.S. Petrusev, and Y.P. Fedorovsky, IEEE Trans. Nucl. Sci. NS-24, 240 (1977)

    Article  ADS  Google Scholar 

  63. S. Han, R.S. Wagner, J. Joseph, M.A. Piano, and M. D. Moyer, Rev. Sci. Instrum. 66, 5516 (1995)

    Article  ADS  Google Scholar 

  64. V.D. Kovalchuck, V.I. Trotsik, and V.D. Kovallchuck, Nucl. Instrum. Methods A351, 590 (1994)

    ADS  Google Scholar 

  65. V.D. Kovalchuck, V.I. Trotsik, and V.D. Kovallchuck, Instr. Exp. Tech. 38, 14 (1995)

    Google Scholar 

  66. M. Pillon, M. Angelone, and A.V. Krasilnikov, Nucl. Instrum. Methods B101, 473 (1995)

    ADS  Google Scholar 

  67. S.F. Kozlov, A.V. Krasilnikov, and V.M. Bagaev, IEEE Trans. NS-24, 235 (1977)

    ADS  Google Scholar 

  68. R.J. Maqueda, C.W. Barnes, S.S. Han, P.A. Staples, and R.S. Wagner, Rev. Sci. Instrum. 68, 624 (1997)

    Article  ADS  Google Scholar 

  69. S. Croft, D.S. Bond, and N.P. Hawkes, Rev. Sci. Instrum. 64, 1418 (1993)

    Article  ADS  Google Scholar 

  70. S.F. Kozlov, E.A. Konorova, Y.A. Kuznetsov, Y.A. Salikov, V.I. Redko, V.R. Grinberg, and M.L. Meilman, IEEE Trans. Nucl. Sci. NS-24, 235 (1977)

    Article  ADS  Google Scholar 

  71. C.P. Beetz, B. Lincoln, D.R. Winn, K. Segall, M. Vasas, and D. Wall IEEE Trans. Nucl. Sci. NS-38, 107 (1991)

    Article  ADS  Google Scholar 

  72. S. Han, R.S. Wagner, and E. Gullikson, Nucl. Instrum. Methods A380, 205 (1996)

    ADS  Google Scholar 

  73. F. Foulon, P. Bergonzo, C. Jany, A. Gicquel, and T. Pochet, Nucl. Instrum. Methods A380, 42 (1996)

    ADS  Google Scholar 

  74. C. Jany, F. Foulon, P. Bergonzo, A. Brambilla, A. Gicquel, and T. Pochet, Nucl. Instrum. Methods A380, 107 (1996)

    ADS  Google Scholar 

  75. C. White, Nucl. Instrum. Methods A351, 217 (1994)

    ADS  Google Scholar 

  76. F. Borchelt and 20 co-authors, Nucl. Instrum. Methods A354, 318 (1995)

    ADS  Google Scholar 

  77. C. Bauer and 43 co-authors, Nucl. Instrum. Methods A367, 202 (1995)

    ADS  Google Scholar 

  78. C. Bauer and 44 co-authors, Nucl. Instrum. Methods A380, 183 (1996)

    ADS  Google Scholar 

  79. C. Bauer and 48 co-authors, Nucl. Instrum. Methods A383, 64 (1996)

    ADS  Google Scholar 

  80. D.L. Jassby, G. Ascione, H.W. Kugel, A.L. Roquemore, T.W. Barcelo, and A. Kumar, Rev. Sci. Instrum. 68, 540 (1997)

    Article  ADS  Google Scholar 

  81. R.B. Spielman, L.E. Ruggles, R.E. Pepping, S.P. Breeze, J.S. McGun, and K.W. Struve, Rev. Sci. Instr. 68, 782 (1997)

    Article  ADS  Google Scholar 

  82. S.N. Rustgi and M.D. Fyre, Med. Phys. 22, 2117 (1995)

    Article  Google Scholar 

  83. S. Vatnitsky, D. Miller, J. Siebers, and M. Moyers, Med. Phys. 22, 469 (1995)

    Article  Google Scholar 

  84. S.N. Rustgi, Med. Phys. 22, 567 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jackman, R.B. (1998). CVD Diamond for Ultraviolet and Particle Detectors. In: Dischler, B., Wild, C. (eds) Low-Pressure Synthetic Diamond. Springer Series in Materials Processing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71992-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71992-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71994-3

  • Online ISBN: 978-3-642-71992-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics